
Chapter 5: Constrained Optimization

5.5 Gradient Projection and Reduced Gradient Methods

Rosen’s gradient projection method is based on projecting the search direction into
the subspace tangent to the active constraints. Let us first examine the method for
the case of linear constraints [7]. We define the constrained problem as

minimize f(x)

such that gj(x) =
n∑

i=1

ajixi − bj ≥ 0, j = 1, . . . , ng .
(5.5.1)

In vector form
gj = aT

j x− bj ≥ 0 . (5.5.2)

If we select only the r active constraints (j ∈ IA), we may write the constraint
equations as

ga = NTx− b = 0 , (5.5.3)

where ga is the vector of active constraints and the columns of the matrix N are
the gradients of these constraints. The basic assumption of the gradient projection
method is that x lies in the subspace tangent to the active constraints. If

xi+1 = xi + αs , (5.5.4)

and both xi and xi+1 satisfy Eq. (5.5.3), then

NT s = 0 . (5.5.5)

If we want the steepest descent direction satisfying Eq. (5.5.5), we can pose the
problem as

minimize sT∇f
such that NT s = 0 ,

and sT s = 1 .

(5.5.6)

That is, we want to find the direction with the most negative directional deriva-
tive which satisfies Eq. (5.5.5). We use Lagrange multipliers λ and µ to form the
Lagrangian

L(s,λ, µ) = sT∇f − sTNλ− µ(sT s− 1) . (5.5.7)

The condition for L to be stationary is

∂L
∂s

= ∇f −Nλ− 2µs = 0 . (5.5.8)

Premultiplying Eq. (5.5.8) by NT and using Eq. (5.5.5) we obtain

NT∇f −NTNλ = 0 , (5.5.9)

or
λ = (NTN)−1NT∇f . (5.5.10)
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Section 5.5: Gradient Projection and Reduced Gradient Methods

So that from Eq. (5.5.8)

s =
1

2µ
[I −N(NTN)−1NT ]∇f =

1

2µ
P∇f . (5.5.11)

P is the projection matrix defined in Eq. (5.3.8). The factor of 1/2µ is not significant
because s defines only the direction of search, so in general we use s = −P∇f . To
show that P indeed has the projection property, we need to prove that if w is an
arbitrary vector, then Pw is in the subspace tangent to the active constraints, that
is Pw satisfies

NTPw = 0 . (5.5.12)

We can easily verify this by using the definition of P.

Equation (5.3.8) which defines the projection matrix P does not provide the most
efficient way for calculating it. Instead it can be shown that

P = QT
2 Q2 , (5.5.13)

where the matrix Q2 consists of the last n − r rows of the Q factor in the QR
factorization of N (see Eq. (5.3.9)).

A version of the gradient projection method known as the generalized reduced
gradient method was developed by Abadie and Carpentier [8]. As a first step we
select r linearly independent rows of N, denote their transpose as N1 and partition
NT as

NT = [N1 N2] . (5.5.14)

Next we consider Eq. (5.5.5) for the components si of the direction vector. The r
equations corresponding to N1 are then used to eliminate r components of s and
obtain a reduced order problem for the direction vector.

Once we have identified N1 we can easily obtain Q2 which is given as

QT
2 =

[
−N−1

1 N2

I

]
. (5.5.15)

Equation (5.5.15) can be verified by checking that NTQT
2 = 0, so that Q2N = 0,

which is the requirement that Q2 has to satisfy (see discussion following Eq. (5.3.11)).

After obtaining s from Eq. (5.5.11) we can continue the search with a one di-
mensional minimization, Eq. (5.5.4), unless s = 0. When s = 0 Eq. (5.3.7) indicates
that the Kuhn-Tucker conditions may be satisfied. We then calculate the Lagrange
multipliers from Eq. (5.3.6) or Eq. (5.3.11). If all the components of λ are non-
negative, the Kuhn-Tucker conditions are indeed satisfied and the optimization can
be terminated. If some of the Lagrange multipliers are negative, it is an indication
that while no progress is possible with the current set of active constraints, it may
be possible to proceed by removing some of the constraints associated with negative
Lagrange multipliers. A common strategy is to remove the constraint associated with
the most negative Lagrange multiplier and repeat the calculation of P and s. If s
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is now non-zero, a one-dimensional search may be started. If s remains zero and
there are still negative Lagrange multipliers, we remove another constraint until all
Lagrange multipliers become positive and we satisfy the Kuhn-Tucker conditions.

After a search direction has been determined, a one dimensional search must be
carried out to determine the value of α in Eq. (5.5.4). Unlike the unconstrained case,
there is an upper limit on α set by the inactive constraints. As α increases, some
of them may become active and then violated. Substituting x = xi + αs into Eq.
(5.5.2) we obtain

gj = aT
j (xi + αs)− bj ≥ 0 , (5.5.16)

or

α ≤ −(aT
j xi − bj)/a

T
j s = −gj(xi)/a

T
j s . (5.5.17)

Equation (5.5.17) is valid if aT
j s < 0. Otherwise, there is no upper limit on α due to

the jth constraint. From Eq. (5.5.17) we get a different α, say αj for each constraint.
The upper limit on α is the minimum

ᾱ = min
αj>0, j3IA

αj . (5.5.18)

At the end of the move, new constraints may become active, so that the set of active
constraints may need to be updated before the next move is undertaken.

The version of the gradient projection method presented so far is an extension
of the steepest descent method. Like the steepest descent method, it may have slow
convergence. The method may be extended to correspond to Newton or quasi-Newton
methods. In the unconstrained case, these methods use a search direction defined as

s = −B∇f , (5.5.19)

where B is the inverse of the Hessian matrix of f or an approximation thereof. The
direction that corresponds to such a method in the subspace tangent to the active
constraints can be shown [4] to be

s = −QT
2 (QT

2 ALQ2)
−1Q2∇f , (5.5.20)

where AL is the Hessian of the Lagrangian function or an approximation thereof.

The gradient projection method has been generalized by Rosen to nonlinear con-
straints [9]. The method is based on linearizing the constraints about xi so that

N = [∇g1(xi), ∇g2(xi), . . . ,∇gr(xi)] . (5.5.21)
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Section 5.5: Gradient Projection and Reduced Gradient Methods

Figure 5.5.1 Projection and restoration moves.

The main difficulty caused by the nonlinearity of the constraints is that the
one-dimensional search typically moves away from the constraint boundary. This
is because we move in the tangent subspace which no longer follows exactly the
constraint boundaries. After the one-dimensional search is over, Rosen prescribes a
restoration move to bring x back to the constraint boundaries, see Figure 5.5.1.

To obtain the equation for the restoration move, we note that instead of Eq.
(5.5.2) we now use the linear approximation

gj ≈ gj(xi) +∇gT
j (x̄i − xi) . (5.5.22)

We want to find a correction x̄i − xi in the tangent subspace (i.e. P(x̄i − xi) = 0)
that would reduce gj to zero. It is easy to check that

x̄i − xi = −N(NTN)−1ga(xi) , (5.5.23)

is the desired correction, where ga is the vector of active constraints. Equation
(5.5.23) is based on a linear approximation, and may therefore have to be applied
repeatedly until ga is small enough.

In addition to the need for a restoration move, the nonlinearity of the constraints
requires the re-evaluation of N at each point. It also complicates the choice of an
upper limit for α which guarantees that we will not violate the presently inactive
constraints. Haug and Arora [10] suggest a procedure which is better suited for the
nonlinear case. The first advantage of their procedure is that it does not require
a one-dimensional search. Instead, α in Eq. (5.5.4) is determined by specifying a
desired specified reduction γ in the objective function. That is, we specify

f(xi)− f(xi+1) ≈ γf(xi) . (5.5.24)

Using a linear approximation with Eq. (5.5.4) we get

α∗ = −γf(xi)

sT∇f
. (5.5.25)

The second feature of Haug and Arora’s procedure is the combination of the projection
and the restoration moves as

xi+1 = xi + α∗s−N(NTN)−1ga , (5.5.26)

where Eqs. (5.5.4), (5.5.23) and (5.5.25) are used.
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Example 5.5.1

Use the gradient projection method to solve the following problem

minimize f = x2
1 + x2

2 + x2
3 + x2

4 − 2x1 − 3x4

subject to g1 = 2x1 + x2 + x3 + 4x4 − 7 ≥ 0 ,

g2 = x1 + x2 + x2
3 + x4 − 5.1 ≥ 0 ,

xi ≥ 0, i = 1, . . . , 4 .

Assume that as a result of previous moves we start at the point xT
0 = (2, 2, 1, 0),

f(x0) = 5.0, where the nonlinear constraint g2 is slightly violated. The first constraint
is active as well as the constraint on x4. We start with a combined projection and
restoration move, with a target improvement of 10% in the objective function. At x0

N =

 2 1 0
1 1 0
1 2 0
4 1 1

 , NTN =

[
22 9 4
9 7 1
4 1 1

]
,

(NTN)−1 =
1

11

[
6 −5 −19
−5 6 14
−19 14 73

]
,

P = I−N(NTN)−1NT =
1

11

 1 −3 1 0
−3 9 −3 0
1 −3 1 0
0 0 0 0

 , ∇f =


2
4
2
−3

 .

The projection move direction is s = −P∇f = [8/11,−24/11, 8/11, 0]T . Since the
magnitude of a direction vector is unimportant we scale s to sT = [1,−3, 1, 0]. For a
10% improvement in the objective function γ = 0.1 and from Eq. (5.5.25)

α∗ = − 0.1f

sT∇f
= −0.1× 5

−8
= 0.0625 .

For the correction move we need the vector ga of constraint values , gT
a = (0,−0.1, 0),

so the correction is

−N(NTN)−1ga =
−1

110


4
−1
−7
0

 .

Combining the projection and restoration moves, Eq. (5.5.26)

x1 =


2
2
1
0

+ 0.0625


1
−3
1
0

− 1

110


4
−1
−7
0

 =


2.026
1.822
1.126

0

 ,

we get f(x1) = 4.64, g1(x1) = 0, g2(x1) = 0.016. Note that instead of 10% reduction
we got only 7% due to the nonlinearity of the objective function. However, we did
satisfy the nonlinear constraint.• • •
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Example 5.5.2

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum
weight design subject to stress and displacement constraints was formulated as

minimize f = 3x1 +
√

3x2

subject to g1 = 3− 18

x1

− 6
√

3

x2

≥ 0 ,

g2 = x1 − 5.73 ≥ 0 ,

g3 = x2 − 7.17 ≥ 0 ,

where the xi are non-dimensional areas

xi =
AiE

1000P
, i = 1, 2 .

The first constraint represents a limit on the vertical displacement, and the other two
represent stress constraints.

Assume that we start the search at the intersection of g1 = 0 and g3 = 0, where
x1 = 11.61, x2 = 7.17, and f = 47.25. The gradients of the objective function and
two active constraints are

∇f =

{
3√
3

}
, ∇g1 =

{
0.1335
0.2021

}
, ∇g3 =

{
0
1

}
, N =

[
0.1335 0
0.2021 1

]
.

Because N is nonsingular, Eq. (5.3.8) shows that P = 0. Also since the number of
linearly independent active constraints is equal to the number of design variables the
tangent subspace is a single point, so that there is no more room for progress. Using
Eqs. (5.3.6) or (5.3.11) we obtain

λ =

{
22.47
−2.798

}
.

The negative multiplier associated with g3 indicates that this constraint can be
dropped from the active set. Now

N =

[
0.1335
0.2021

]
.

The projection matrix is calculated from Eq. (5.3.8)

P =

[
0.6962 −0.4600
−0.4600 0.3036

]
, s = −P∇f =

{
−1.29
0.854

}
.

We attempt a 5% reduction in the objective function, and from Eq. (5.5.25)

α∗ =
0.05× 47.25

[−1.29 0.854]

{
3√
3

} = 0.988 .
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Since there was no constraint violation at x0 we do not need a combined projection
and correction step, and

x1 = x0 + α∗s =

{
11.61
7.17

}
+ 0.988

{
−1.29
0.854

}
=

{
10.34
8.01

}
.

At x1 we have f(x1) = 44.89, g1(x1) = −0.0382. Obviously g2 is not violated. If there
were a danger of that we would have to limit α∗ using Eq. (5.5.17). The violation of
the nonlinear constraint is not surprising, and its size indicates that we should reduce
the attempted reduction in f in the next move. At x1, only g1 is active so

N = ∇g1 =

{
0.1684
0.1620

}
.

The projection matrix is calculated to be

P =

[
0.4806 −0.4996
−0.4996 0.5194

]
, s = −P∇f =

{
−0.5764
0.5991

}
.

Because of the violation we reduce the attempted reduction in f to 2.5%, so

α∗ = − 0.025× 44.89

[−0.567 0.599]

{
3√
3

} = 1.62 .

We need also a correction due to the constraint violation (ga = −0.0382)

−N(NTN)−1ga =

{
0.118
0.113

}
.

Altogether

x2 = x1+α
∗s−N(NTN)−1ga =

{
10.34
8.01

}
−1.62

{
0.576
−0.599

}
+

{
0.118
0.113

}
=

{
9.52
9.10

}
.

We obtain f(x2) = 44.32, g1(x2) = −0.0328.

The optimum design is actually xT = (9.464, 9.464), f(x) = 44.78, so after two
iterations we are quite close to the optimum design.• • •

5.6 The Feasible Directions Method

The feasible directions method [11] has the opposite philosophy to that of the
gradient projection method. Instead of following the constraint boundaries, we try to
stay as far away as possible from them. The typical iteration of the feasible direction
method starts at the boundary of the feasible domain (unconstrained minimization
techniques are used to generate a direction if no constraint is active).
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