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= 18 (f shows its local maximum)

= - v. = 18 and hence h
ot as [ = b=225cmand h = 18 ¢,y

aximizing dimensions

[ = (225) (22.5) (18) = 9112.5 cc

or (18 — x3)/12
Finally, we get the m

and

Approach of penalty function method

In this method, the basic optimization problem is transformed into an alternative formulati(m &
that numerical solutions are sought by using sequential unconstrained minimization technigyes
(SUMTSs or SUM techniques). The approach is presented as follows with a general optimizatigy

problem.
Find X that minimizes f(X)

subject to gl.(X) <0,j=1,2,.. m where X = [X],i=1,2,3,..,n

This problem can be converted into an unconstrained minimization problem by defining
a function,

B = (X, 1) = f(X) +1, 21 G,[g,(X)]
-

where G, is some function (such as reciprocal) of constraint g and r, is a positive constant

m
called penalty parameter and |:rk > G g (X )] is called the penalty term. Its significance is
j=l

explained in the sections to follow.

Now if the unconstrained minimization of function ¢, is repeated for a sequence of
values of penalty parameters r, r,, ..., 7, the solution can be converged to the original
problem. Thus, we are using the penalty function in a sequence of unconstrained minimization
problem. Therefore, the method is also called sequential unconstrained minimization technique
or penalty function method. This method can be carried out in three different ways, which are

named exterior, interior and mixed penalty function methods as discussed in the sections that
follow.

11.6 The Penalty Function

In fagt, thf: penalty terms differ in the way the penalty is assigned. We can use the penaly
functions in three ways as follows.

1. Exterior penalty function
2. Interior penalty function
3. Mixed penalty function

The first type of penalty method uses the penélty function 'to penalize the infeasit’®

points but not the feasible poin . ization
: points. In such methods, every se i timizat!
tt - . ’ u edo

attains an improved yet infeasible so] ry sequence of unconstrained 0P nalt

methods. ution. These methods are known as exterior P



Working Rule: The Procedural Steps

Step 1: Start at any point X, and a suitable value of r, (ic. set k = 1),

Step 2: Find the vector X,: that minimizes pX, r) = f(X) + 'ﬁ (g, (X))
f=I

Step 3: Check if the point X, satisfies

all the constraints, If yes, terminate; else go to the
next step.

Step 4: Set k =k + 1 and select the next value of the penalty parameter satisfying the relation
"1 = 1y (Generally 7., 1 taken as Yoy tcr, where ¢ > 1, a constant.)
Step 5: Repeat the process till the function gets the optimal value.

Dllustration 11.3 Use the exterior penalty function method to

o o e ; 2
minimize /= 9x} + 4x7 + 3x, + 3x,

subject to g(x,) = 5 — 2x, < 0 and g(x,) = 2x, ~ 3 2 0. Also show the convergence of the
function under the penalty r.

Solution We shall rewrite the problem as

e 2 2
minimize /= 9x; + 4x; + 3x, + 3x,

: 5 3 <0
SUb_]eCt to g(xl) = (5) — X < (0 and g(xz) = E — X, < 0.
Solving the problem by the differential calculus method of unconstrained minimization [initial
feasible point x, is not required (¢ is chosen as 2)].

2 2
> ax{0,> - }J (i)

¢(X1, r) = 9x,2 + 4x22 + 3x, + 3x, + r[max{o,i—xl}] +r[qu{ > X,
; .Where ¥ is the penalty of the function.

fvari strai ro
© necessary conditions for a multivariable uncpnstramcd p
fal derivatives and equating them to zero, i.c.

' blem are written by calculating
 tep,
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5
9 =18x,+3 ~ ZF[maX{O:—_xl}:l :
o, 2 (ii)
99 =8x, +3 — Zr[max{O,é—xz}J .
and 0x, ? & 0

tten as follows:
minimize [18x, + 3, 18x; + 3-2r(25-x)] (i
minimize [8x, + 3, 8, + 3-2r(l.5 - x,)] v)

These equations can be wrl

From (i1),
and from (iil),

Now from (iv), if 18x, +3 =0 = X = -3/18.

This violates the first constraint 5 — 2x; < 0; so x; = —3/18 cannot be a solution.

And if 18x, +3 = 2r(2.5 - x)=0
1€ (18 +2r)x, + 3 - 5n) = 0

_ 5r=3 '
then X = 7 +18 (vi)

From (v), we have 8x, +3 =0 = Xx, = -3/8.
This violates the second constraint 3 — 2x, < 0; so, x, = —3/8 cannot be a solution.

And if 8x, +3 - 2r(1.5 -x,)=0
ie. 8 +2rx,+(3-3n=0
3r-3 .
then X, = i
27 2r+8 ()

Thus, the solution for the above original problem can be obtained from (Vi)‘ and (vii) as
follows:

x = lim x (r) = lim

(5r-3J 5

— re| 2r +18 | 2
and %3 = lim () = lim| 223 | = 2
r—seo roe| 2r+8| 2
2 2
5
and o=/ = o) = 9} +4(§) +3(§)+3 3
2 2 2 2

- \2
= | i — +| — =‘9—
(4 4 2) (2) 7 =7725

Hence the optimal solution 1s: £
min

= 77. - *
The convergence of the functio 25at % =502 and x; = 3/2.

n can b¢ observed from the values given in Table 1! 1
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Table 11.1 Convergence of Jin®

Sr—3 3r—-3

Valueof r x;= =T Xy = i fmii;(f)
0.001 —-0.1663704 —-0.16648 —-0.6386
0.01 —0.16370699  —0.16482 —-0.6357
1 0.1 0 0.39
10 1.236842105  0.710526 21.63
100 2279816514  1.362385 65.129
1000 2476214073  1.485134 75.891
10000 2497602158  1.498501 77.112
100000 2.499760022  1.49985 77.236
1000000 2.499976 1.499985 77.249

oo 2.5 or 5/2 1.5 or 3/2 77.25

Mustration 11.4  Use the exterior penalty function method to
maximize [ = —2x7 — 3x; — X, — X,
subject to g(x,) = 15 —3x, <0 and g(x,) = —x, < 0.
Solution We shall rewrite the problem as
minimize f = 2x; + 3x; +x; + X,
subject to g(x,) = 5 — x, < 0 and g(x,)) =—x,<0.

Let us solve the problem by the differential calculus method of unconstrained minimization
(g 1s chosen as 2).

2 .
O(X, ) =2x}+3x; +x, +x,F r[max{0, 5 — x,}? + r[max{0, — x,}] | (i)

where 7 is the penalty of the function. _ o il
The necessary conditions for a multivariable unconstrained problem are written by calculating

the partial derivatives and equating them to Zeto.

i1
%9 =4x,+ 1 - 2r[max{05‘x}]’0 &
ax s
: 1] = ' (iii)
and 99 = 6x,+ 1 — 2r[max {0, — X,
0x,
These equations can be written as follows: | = 2r(5 - %) , (iv)
From (i, minimize [4x + 141770 oy V
™ from (i), minimize [6%; + 1 0%
- — 4 solution.
Now from (iv), if 4, +1=0 = % = 1/4. o x, =-1/4 cannot be @ SO
b This Contradicts the ﬁrst constraint 5 — *1 = = e oF O |
At g, + 125 =50
; Ie + (1 107 ) -
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10r -1
x =
then ! 2r + 4 (VI)

+1=O = x2=——l/6.

From (v), we have 6x,
d constraint —x, < 0; 80, X; =

This violates the secon

—1/6 cannot be a solution.

And if 6x, + 1 — 2r(= x,)=0 |
ie. 6 +2r)x,+1=0 |
then 27 0r+6 (vi)

Thus, the solution for the above original problem can be obtained from (vi) and (vii) as follows:

* . * . —10 '—’1
x1=11mx1(r)=r11_1;{.1° L }=5

r—yeo :2r5+ 4
o [ -1 ]_0_
= lm 0= lim| 5757 =0
and fro =" = fa) = 200 4(0)* + (5) + (0)

=50+0+5+0=55"
Optimal solution: f;, = 55 (or f,,, = —55) at x,* =5 and x; = 0.

Illustration 11.5 Use the exterior penalty function method to

. . . 1 3 2 ]-
minimize [ = 3% +x tx, tx, Tt 3

subject to g(x;) =1 —x; < 0 and g(x,) = x, 2 0.
Calculate numerically at least 5 steps in convergence of the penalty, 7, of the

starting from 0.001 and reaching infinity.

Solution We shall rewrite the problem as

function

5 1 1
minimize f = §x13 + x7 +x, +x, + 5
subject to g(x,) = 1 — x; < 0 and g(x,) = —=x, < 0. d
| We can use the differential calculus method of unconstrained minimization as this metl®

oes not require the initial base point of X and is simpler. Further, g is chosen 8 2.

1 :
X = —x3 2 1 l)
‘ o(X,, r) : Xo+x+x tx, + 3 + r[max (0, 1 — xl)]2 + r[max (0, —xz)]2 (
3 where r is the penalty of the function.

‘The neces iti i
e sary 'condxtlons for a multivariable unconstrained problem are written
erivatives and equating them to zero

9 _ .,
dx, xi + 2x; + 1 = 2r[max(0, 1 -x)] = 0

" calculf‘ﬁ“g | ‘.‘_’j

i
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and o, =1 - 2r[max(0, —x)] = 0
hes eqmtions can be written as follows: (iii)

oSt
£rom (i) minimize [x{ + 2%, + 1, x2 + 26 41— 21

d from (iil), minimize[l, | + 2, x,] (1 - x))] (iv)
oW f 2 t1=0 = x =] )
This contradicts the first constraint, i.e. 1 — X <0orx >
’\ndt\14-7\]+1—2’(1—x1)_0 (Vl)

" :;(7+7;)1 +(1-2rn=0

v = -(2+2r)+ \/(2 +2r)% — 4(1 - 2r)
then 1 2

2(0+7r)£2J0+r)?-1-2
of % T \/2 £l r)=—(1+r)i\/(1+r)2-(1—2r)

. x, = —(l+r)* J2 + 4r) (vii)

Similarly, from (v), the only possible relation 1 + 2rx, = 0 yields x, = —1/2r

4\ 42
x1=—1—r+r(1+—) or —1—r—r(1+—) (viii)
¥ r

1 )
and Xy = _5- _ (ix)
r

Asr increases, the values of x converge to optimal values. Thus, the solution for the problem
@n be obtained by the following relations:

1/2
4 e
xl— hmxl(r)—hm,: 1—r+r(l+;) :|—1

y—oo y—

1/2
(The Second value of x. = lim [ —1l=r-r (1 + i) jl — — 3 violates first constraint; hence ignored. ]
1= r

g

F—yo0
¥ = rlg?axz (I’) )—)In;lo 2r
£ =2.66667

1
fmm— f = hm¢mm(r) fm'“(r)_—+l+l+0+§—3

:; Ihe oy . . .
;: 5hOw e “Igence of the function as the penalty, 7 values increase from 0.001 to infinity 1s
l‘ N ip Table 112
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Optimizati
Table 11.2 Convergence of the Function with the Increasing Values of the Penaly
* ol = —— r
Value of r x;=—1-r+ r(1+ r) X,(r) 2 Jonin ¢min(,-)
‘\
0.001 ~-0.9377 —500 —-249.997 -500
0.01 ~0.8097 -50 —24.965 ~49.9977
N 0.2360 -5 -2.234 ~4.9474
10 0.8322 -0.05 2.307 2.001
100 0.9804 —0.005 2.625 2.5840
1000 0.9980 —-0.0005 2.662 2.6582
oo 1 0 2.6667  2.6667 Optima]

Interior Penalty Function Method

This method is also known as the barrier method since the constraint boundaries act as
barriers during the minimize process. The interior penalty function was first defined by Caro||
The interactive process is summarized as follows:

Working rule: the procedural steps

1.

2.

(94

Start at an initial feasible point X, that can satisfy all the constraints with strict inequality
sign, i.e. gj(Xl) <0 forj=1,2,.. m and an initial value of r;> 0 (ie. setk=1).
Minimize ¢(X, r,) by using any unconstrained minimization technique and obtain the
solution for x,’: .

. Test if x; is the optimum solution of the original problem. If yes, stop. Otherwise g0

to the next step.

Find the value of the next penalty parameter, i.e. 7, as r,,, = cr, where ¢ < L.

Set the new value of k = k + 1 and take the new starting point as x, = x; and reped
the process.

Limitations

Note:

O 09 e

Some points are noteworthy where care should be taken while implementing this proc®s*

The starting feasible point (i.e. X) may not be readily available in some cases.
A suitable value of the initial penalty parameter, r,, has to be found.

-1 and 0 only.

11 i i .
ustration 11.6 Use the Interior penalty function method to

subject to g(xl) =5 -
function under the pena

minimize f'= 9x2 + 4x5 + 3x, + 3x,

f
lzt)}cf1 rS R0 8(xy) = 2x,— 3 > 0. Also show the convergence 0

the




alion We shall rewrite the problem a4
l ,
minimize f = 9% + 4 X+ 3y + 3y
. . 1
bject 10 (1) = (5/72) = x, < 0 and g(x)) = (372) - x, <0 :
"t is convenient to use the cal I

culus method i fhi
g’ eeded. In this case and so the initial feasible point X

15 1 . .
Let us first define the ¢ function as

X}, r) = Ix] + 4x2 + 1
1 Xy + 3x, +3x, - r : +3 1 0
>om S-x

2

where r is the interior penalty of the function,
The necessary conditions for a multivariable unconstrained

: i . roblem are written b i
the partial derivatives and equating them to zero. R y calculating

b a—q)=18x1 $3 o — =0 (ii)
oy (2.5-x)
99 1 -
and o =8x,+ 3 - r[(l.S—xzf} =0 (iii)

NWﬁmnﬁxl&q+3=r[ } or 3(6x,+1)QR5-x)=r

(2.5 -x)°
Thus, intuitively we can find the convergence of x; = 2.5 or —1/6 as the limit tends to zero
(r— 0).

: : 5 _ 2x, <
The negative answer (—1/6) violates the first constraint 5-2x <0

S0, we consider x; = 2.5 or 5/2.
Now from (i),
8x,+3 =7 ————1——‘2'] or (8x,* (15 —x) =7
2 (5= imi ro (r = 0).
_y —3/8 or 3/2 as the limit r tends to Z€ ,

Thus, the convergence can be noticed at X t3-2x,50.

train
he negative answer (-3/8) violates the second cons
. We consider xj = 1.5 or 3/2

2 3
2 (3 3143 —)

fmin =f* =fmin(r)=9k2

s\ (3
62542 +3(3)+3(;)
=9 "")+4 Z 2 o

N 36 15)+(2)=§22:7725
(@R

O v _ g/ and X3 =
Himg] Solution; foo =729 AW §/2 and
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on can be observed by calculating the values of X

1000, 100, 10, 1, 0.1, 0.01, 0.001, ..., and so oy (1o %

The convergence of the functi 2
til] the

and f* by giving the values to 7=
function consistently converges.

Tllustration 11.7 Use the interior penalty function method to

maximize f = _2xf - 3x5 — X, — X,
subject to g(x;) = 15 - 3x, £ 0 and g(xy) =—x,< 0.
Solution We shall rewrite the problem as

. 2 2
minimize /= 2x{ + 3x; +x; T X,

subject to g(x;) =5 —x; <0 and g(x,) = =X, < 0. N . . .
Let us use the calculus method in this case so that the initial feasible point X is not necessary,

Let us first define the ¢ function as

1 1 .
¢(X,r)=2x12+3x§+xl+x2—r[s_x1+_x2} (i

where 7 is the interior penalty of the function.
The necessary conditions for a multivariable unconstrained problem are written by calculating

the partial derivatives and equating them to zero.

| 99 I ..
1.€. —a;l— = 4x1 +1- rl:m:l =0 (11)

3¢ 1
and g =6x,+ 1 - r[(_x2)2:| =0 (iii)

Now from (i), 4x, + 1 = r[
(G-x)

Thus, the convergence can be found as the limit tends to zero (r—>0)atx = 5 or —1/4
The negative answer (—1/4) violates the first constraint 15 — 3x, £ 0.

. — 2] or (4x; + (5 —x)=r

. *
So, we consider x; = 5.

1
Now from (iii), 6x, + 1 = rli )2] or (6x,+ 1) (- x2)2 =7

g

Asx, - 0 or.—1/6, the penalty r tends to zero (r = 0).
The negative answer (=1/6) violates the second constraint -x, < 0.
So, we consider x; =0 :

And Juin =S = [ =2(52 + 4(0)* + (5) + (0)

=50+0+5+0=55

Optimal solution- _ i
Solution: f . =55 (or f . =-55) at X =5 and x; —0.
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Justrd tion 11.8 Use the interior Penalty functiop method to

1
= — 43 2
minimize f = 3x1 + X +x, + X, + =

sub)

oct to the constraints g(x,) = 1 — X, =0 and g(x,)
Gix steps in convergence of the penalty, ¥, of the

=X, 2 (. Calculate numerically at least
function starting from r = 1000,

Solution 1t is convenient to use the calculus meth
point X is not necessary.

Let us first define the ¢ function as
3

od in this cage and so the initial feasible

X
P )=t by e L1
3 ‘xl + l xZ
where 7 is the interior penalty of the function.
Applying the necessary conditions, we have
9 _ , r
S X +2x +1- =( (l)
o Ty
¢ r .
and Ezl—;‘,%—:O (ii)

Relation (i) can be rewritten as Oy + 12 =, - 12 =0

ie. F-12-r=0 = @-12=/
i.e. x12—1=\/; = x12=l+\/;

or xl(r) = \/1-{-\/;.

And Bq. (ii) gives x)(r) = r.
Further, the ¢ function is rewritten as

) =S () () 4 e
BRORe

10 et the solution of the problem, we use the theory of limits as follows:

fmin (r)= h_l;l;lo Pmin (r)

> = 1lim x, ()
* k * Y = X
x; = lim x; () and D
r—oo .
4 - are shown 1n
e i uence of values of 7
: S X i easing seq
Tble [ Offmin’ X, x, corresponding to a decreasing

C113,



274 Optimization Methods for Engineers

Table 11.3 Values of /_,_(r) with Decreasing Values of r

Value of r x,(r)= \f'l +r n@)=Jr Oin (") J in®)
1000 5.7116 31.6228 376.2646 132.4003
100 3.3166 10.0000 89.9772 36.8109
10 2.0402 3.1623 25.3048 12.5286
| 1.4142 1.0000 9.1046 5.6904
0.1 1.1473 0.3162 46117 3.6164
0.01 1.0488 0.1000 3.2716 2.9667
0.001 1.0157 0.0316 2.8569 2.7615
0.0001 1.0049 0.0100 2.7267 2.6967
0.00001 1.0016 0.00316 2.6856 2.6762
0.000001 1.0005 0.00100 2.6727 2.6697

0 1 0 2.66667 = 8/3 2.66667 = 8/3




