or
$$\frac{1}{p} = \frac{1}{2} \left(\frac{d p}{d y} - \frac{1}{p^2} \frac{d p}{d y} \right) \qquad \left(\text{since } \frac{d x}{d y} = \frac{1}{p} \right)$$
or
$$\frac{1}{p} = \frac{1}{2} \left(1 - \frac{1}{p^2} \right) \frac{d p}{d y}$$

Separating the variables, we get $dy = \frac{1}{2} \left(p - \frac{1}{p} \right) dp$

Integrating both sides, we get

$$y = \frac{1}{4} p^2 - \frac{1}{2} \ln p + C \tag{2}$$

Equations (1) and (2) constitute the complete solution of the given differential equation.

3.7 CLAIRAUT EQUATION

A differential equation of the form

$$y = p x + f(p) \tag{1}$$

is called Clairaut equation named after the French mathematician A.C. Clairaut (1713 - 1765).

This equation is solvable for y. To solve it, we differentiate w.r.t. x to obtain

$$p = \frac{dy}{dx} = p + x p' + f'(p) p' = [x + f'(p)] p' + p$$

or

$$[x+f'(p)]p'=0$$

Rejecting the factor x + f'(p) which does not involve $\frac{dp}{dx}$, we have

$$p' = \frac{dp}{dx} = 0$$

or p = C = constant

(2)

Eliminating p between equations (1) and (2), we get

$$y = Cx + f(c)$$
 (3)

which is the required solution of the Clairaut equation.

Thus it appears that to solve Clairaut equation, it is necessary only to replace p by C.

NOTE: If we eliminate p between x + f'(p) = 0 and equation (1), we get a solution which does not contain any arbitrary constant, and hence, is not a particular solution of equation (3). Such a solution is called singular solution.

EXAMPLE (4): Solve the following differential equations:

(i)
$$y = p x + \sqrt{a^2 p^2 + b^2}$$
 (ii) $y = p (x - b) + \frac{a}{p}$

SOLUTION: (i) $y = p x + \sqrt{a^2 p^2 + b^2}$

This equation is in standard form of Clairaut equation. Its solution can be written by replacing p by C.

Thus $y = C x + \sqrt{a^2 C^2 + b^2}$ is the solution of the given equation.

(ii)
$$y = p(x-b) + \frac{a}{p}$$

This equation can be written as $y = p x - p b + \frac{a}{p}$

which is the general form of Clairaut equation .

lts solution can be written by replacing p by C. Thus

 $y = C x - C b + \frac{a}{C}$ is the solution of the given equation.

3.8 EQUATIONS REDUCIBLE TO CLAIRAUT FORM

The equation of the form

$$y^2 = p \times y + f\left(\frac{p y}{x}\right) \tag{1}$$

can be reduced to Clairaut form by making the substitutions $u = x^2$, and $v = y^2$.

Put
$$u = x^2$$
 then $\frac{du}{dx} = 2x$, $v = y^2$ therefore $\frac{dv}{dx} = 2y\frac{dy}{dx} = 2yp$

Now
$$\frac{dv}{du} = \frac{dv}{dx} \frac{dx}{du} = \frac{py}{x}$$

Then equation (1) becomes

$$v = u \frac{dv}{du} + f\left(\frac{dv}{du}\right)$$

which is obviously the Clairaut equation .

EXAMPLE (5): Solve the differential equation :

$$x^2y^2 = p x^3 y + p^2 y^2 + p x y + 9 x^2$$
.

SOLUTION: The differential equation can be written as

$$y^2 = p x y + \frac{p^2 y^2}{x^2} + \frac{p y}{x} + 9$$
 (1)

Let $x^2 = u$ and $y^2 = v$, then 2x dx = du and 2y dy = dv

or
$$\frac{dv}{du} = \frac{2ydy}{2xdx} = \frac{y}{x}\frac{dy}{dx} = \frac{py}{x}$$

Substituting in equation (1), we get

$$v = \frac{x}{y} \left(\frac{dv}{du} \right) x y + \left(\frac{dv}{du} \right)^2 + \frac{dv}{du} + 9$$

$$= x^2 \frac{dv}{du} + \left(\frac{dv}{du} \right)^2 + \frac{dv}{du} + 9$$

$$= u \frac{dv}{dx} + \left(\frac{dv}{du} \right)^2 + \frac{dv}{du} + 9$$
(2)

Let $\frac{d v}{d x} = P$, then equation (2) becomes

$$v = up + (P^2 + P + 9)$$

which is of Clairaut form. Thus its general solution is given by

$$v = u C + (C^2 + C + 9)$$

or
$$y^2 = x^2C + (C^2 + C + 9)$$

= $C(x^2 + C + 1) + 9$

3.9 EQUATIONS REDUCIBLE TO CLAIRAUT FORM BY TRANSFORMATION

EXAMPLE (6): Solve the differential equation:

$$y p^2 + x^3 p - x^2 y = 0$$
.

SOLUTION:
$$y p^2 + x^3 p - x^2 y = 0$$

Let $x^2 = u$, and $y^2 = v$, then

$$2 \times d \times = d u$$
 and $2 y d y = d v$

$$\frac{d v}{d u} = \frac{y}{x} \frac{d y}{d x} = \frac{y p}{x} = \frac{\sqrt{v}}{\sqrt{u}} p$$

Substituting in equation (1), we get

$$\sqrt{v} \, \left(\frac{u}{v} \right) \left(\frac{d \, v}{d \, u} \right)^2 + u^{3/2} \left(\frac{\sqrt{u}}{\sqrt{v}} \right) \left(\frac{d \, v}{d \, u} \right) - u \, \sqrt{v} \; = \; 0$$

or
$$\frac{u}{\sqrt{v}} \left(\frac{dv}{du} \right)^2 + \frac{u^2}{\sqrt{v}} \frac{dv}{du} - u \sqrt{v}$$

or
$$\left(\frac{d v}{d u}\right)^2 + u \frac{d v}{d u} - v = 0$$

Letting $\frac{d v}{d u} = P$, then the above equation becomes

$$P^2 + uP - v = 0$$

or
$$v = u P + P^2$$

which is of Clairaut equation. Thus its general solution is

$$v = uC + C^2$$

or
$$y^2 = x^2 C + C^2$$

EXAMPLE (7): Solve the differential equation :

$$y = 3 x p + 6 y^2 p^2$$

SOLUTION: Multiply the given equation by y^2 , we get

$$y^3 = 3 \times y^2 p + 6 y^4 p^2$$

The telephone was a series

ORDINARY DIFFERENTIAL EQUATIONS

87

Using the transformation $y^3 = u$, then $3y^2 \frac{dy}{dx} = \frac{dx}{dx}$

or
$$3y^2p = \frac{du}{dx}$$
 (since $\frac{dy}{dx} = p$)

Thus equation (1) becomes

$$u = x \frac{du}{dx} + 6\left(\frac{1}{9}\right) \left(\frac{du}{dx}\right)^2$$
$$= x \frac{du}{dx} + \frac{2}{3} \left(\frac{du}{dx}\right)^2$$

which is of Clairaut form. Thus the solution is $u = Cx + \frac{2}{3}C^2$

or
$$y^3 = Cx + \frac{2}{3}C^2$$

CLAIRAUT EQUATION

PROBLEM (4): Solve the following differential equations:

(i)
$$\sin p x \cos y = \cos p x \sin y + p$$

(ii)
$$(y-px)^2 = 1+p^2$$

(iii)
$$p^2(x^2-a^2)-2pxy+y^2-b^2=0$$

(iv)
$$p^2 x (x-2) + p (2y-2xy-x+2) + y^2 + y = 0$$

SOLUTION:

(i)
$$\sin p x \cos y = \cos p x \sin y + p$$

or
$$\sin p x \cos y - \cos p x \sin y = p$$

or
$$\sin(px-y) = p$$

or
$$p x - y = \sin^{-1} p$$

or
$$y = p x - \sin^{-1} p$$

which is of Clairaut equation. Hence its general solution is

$$y = C x - \sin^{-1} C$$

(ii)
$$(y-px)^2 = 1+p^2$$

This equation can be written as

$$y = p x \pm \sqrt{1 + p^2}$$

Both the component equations are of Clairaut form. Thus the general solution of this equation is

$$y = C x \pm \sqrt{1 + C^2}$$

or
$$(y-Cx)^2 = 1+C^2$$

(iii)
$$p^2(x^2-a^2)-2pxy+y^2-b^2=0$$

or
$$y^2 - 2 p x y + p^2 x^2 = a^2 p_1^2 + b^2$$

or
$$(y-px)^2 = a^2p^2 + b^2$$

or
$$y - p x = \pm \sqrt{a^2 p^2 + b^2}$$

or
$$y = p x \pm \sqrt{a^2 p^2 + b^2}$$

Both the components equations are of Clairaut form. Thus the general solution of this equation is

$$y = C x \pm \sqrt{a^2 c^2 + b^2}$$

or
$$(y-Cx)^2 = a^2c^2 + b^2$$

(iv)
$$p^2 x (x-2) + p (2y-2xy-x+2) + y^2 + y = 0$$

or
$$(y^2-2pxy+p^2x^2)+2p(y-px)+(y-px)+2p=0$$

or
$$(y-px)^2+(2p+1)(y-px)+2p=0$$

or
$$(y-p x + 2 p) (y-p x + 1) = 0$$

Both the component equations are of Clairaut form. Thus the general solution is

$$(y-Cx+2C)(y-Cx+1) = 0$$

EQUATIONS REDUCIBLE TO CLAIRAUT FORM

PROBLEM (5): Solve the differential equation:

$$x^{2}(y-px) = yp^{2}$$

by reducing it to Clairaut form.

SOLUTION:
$$x^2(y-px) = yp^2$$

Multiplying equation (1) by y and re-arranging

$$x^2y^2 - px^3y = y^2p^2$$

or
$$y^2 = p x y + \left(\frac{y p}{x}\right)^2$$

which is of the form $y^2 = p x y + f\left(\frac{y p}{x}\right)$

Let $x^2 = u$ and $y^2 = v$, then 2x dx = du and 2y dy = dv

so that
$$\frac{dv}{du} = \frac{2ydy}{2xdx} = \frac{y}{x}\frac{dy}{dx} = \frac{\sqrt{v}}{\sqrt{u}}p$$

Substituting in equation (1), we ger

$$u \left(\sqrt{v} - \frac{\sqrt{u}}{\sqrt{v}} \, \frac{d \, v}{d \, u} \sqrt{u} \, \right) = \sqrt{v} \frac{u}{v} \left(\frac{d \, v}{d \, u} \right)^2$$

or
$$u \sqrt{v} - \frac{u^2}{\sqrt{v}} \frac{dv}{du} = \frac{u}{\sqrt{v}} \left(\frac{dv}{du}\right)^2$$

or
$$v - u \frac{dv}{du} = \left(\frac{dv}{du}\right)^2$$

or
$$v = u \frac{dv}{du} + \left(\frac{dv}{du}\right)^2$$

Letting $\frac{d v}{d u} = P$, then the above equation becomes

$$v = u P + P^2$$

which is of Clairaut form. Thus the solution is given by

$$v = uC + C^2$$

or
$$y^2 = C x^2 + C^2$$

PROBLEM (6): Solve the differential equation:

$$(px-y)(py+x) = 2p$$

SOLUTION: Let
$$x^2 = u$$
 and $y^2 = v$, then $2x dx = du$ and $2y dy = dv$

or
$$\frac{d v}{d u} = \frac{y}{x} \frac{d y}{d x} = \frac{\sqrt{v}}{\sqrt{u}} p$$

Substituting in the given equation, we get

$$\left(\frac{\sqrt{u}}{\sqrt{v}}\frac{dv}{du}\sqrt{u}-\sqrt{v}\right)\left(\frac{\sqrt{u}}{\sqrt{v}}\frac{dv}{du}\sqrt{v}+\sqrt{u}\right)=2\frac{\sqrt{u}}{\sqrt{v}}\frac{dv}{du}$$

$$\left(u\frac{dv}{du} - v\right)\left(\sqrt{u}\frac{dv}{du} + \sqrt{u}\right) = 2\sqrt{u}\frac{dv}{du}$$

or
$$\left(u\frac{dv}{du} - v\right)\left(\frac{dv}{dx} + 1\right) = 2\frac{dv}{dx}$$

or
$$u\left(\frac{dv}{du}\right)^2 + (u-v-2)\frac{dv}{dx} - v = 0$$

Letting
$$\frac{d v}{d u} = P$$
, then

$$u P^2 + (u-v-2) P-v = 0$$

or
$$v = u P^2 + (u - v - 2) P$$

or
$$(1+P)v = uP^2 + uP - 2P = uP(1+P) - 2P$$

or
$$v = u P - \frac{2P}{1+P}$$

which is of Clairaut form and has the solution

$$v = uC - \frac{2C}{1+C}$$

Replacing u by x² and v by y², we get

$$y^2 = C x^2 - \frac{2C}{1+C}$$

as the required solution.

PROBLEM (7): Solve the following differential equation:

 $\cos^2 y p^2 + \sin x \cos x \cos y p - \sin y \cos^2 x = 0$

by reducing it to Clairaut form using the transformation $\sin x = u$, $\sin y = v$.

SOLUTION: $\cos^2 y p^2 + \sin x \cos x \cos y p - \sin y \cos^2 x = 0$ (1)

Since $\sin x = u$, $\sin y = v$, therefore

 $\cos x \, dx = du$ and $\cos y \, dy = dv$

Then $\frac{d v}{d u} = \frac{\cos y \, d y}{\cos x \, d x} = \frac{\cos y}{\cos x} \frac{d y}{d x} = \frac{\cos y}{\cos x} p$

Thus equation (1) becomes

$$\cos^2 y \frac{\cos^2 x}{\cos^2 y} \left(\frac{d v}{d u}\right)^2 + u \cos x \cos y \frac{\cos x}{\cos y} \frac{d v}{d u} - v \cos^2 x = 0$$

$$\cos^2 x \left(\frac{d v}{d u}\right)^2 + u \cos^2 x \left(\frac{d v}{d u}\right) - v \cos^2 x = 0$$

or
$$\left(\frac{d v}{d u}\right)^2 + u \frac{d v}{d u} - v = 0$$

or
$$v = u \frac{dv}{du} + \left(\frac{dv}{du}\right)^2$$

Letting $\frac{d v}{d u} = P$, the above equation becomes

$$v = u P + P^2$$

which is of Clairaut form. The general solution is given by

$$v = uC + C^2$$

or
$$\sin y = C \sin x + C^2$$

PROBLEM (8): Solve the following differential equation:

$$e^{4x}(p-1)+e^{2y}p^2=0$$

by reducing it to Clairaut form using the transformation

$$e^{2x} = u$$
 and $e^{2y} = v$.

ORDINARY DIFFERENTIAL EQUATIONS

SOLUTION:
$$e^{4x} (p-1) + e^{2y} p^2 = 0$$

Since $e^{2x} = u$ and $e^{2y} = v$, therefore
$$2 e^{2x} dx = du \text{ and } 2 e^{2y} dy = dv$$
Then $\frac{dv}{du} = \frac{e^{2y}}{2 e^{2x}} \frac{dy}{dx} = \frac{v}{u} p$

Substituting these in equation (1), we get

$$u^{2} \left(\frac{u}{v} \frac{dv}{du} - 1\right) + v \frac{u^{2}}{v^{2}} \left(\frac{dv}{du}\right)^{2} = 0$$
or
$$\frac{u^{3}}{v} \frac{dv}{du} - u^{2} + \frac{u^{2}}{v} \left(\frac{dv}{du}\right)^{2} = 0$$

$$\frac{u}{v} \frac{dv}{du} - 1 + \frac{1}{v} \left(\frac{dv}{du}\right)^{2} = 0$$
or
$$u \frac{dv}{du} - v + \left(\frac{dv}{du}\right)^{2} = 0$$
or
$$v = u \frac{dv}{du} + \left(\frac{dv}{du}\right)^{2}$$

Letting $\frac{d v}{d u} = P$, the above equation becomes

$$v = u P + P^2$$

which is of Clairaut form. The general solution is given by

$$V = u C + C^{2}$$

or $e^{2y} = C e^{2x} + C^{2}$