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ABSTRACT: Multi-objective optimization has become mainstream because several real-world problems are naturally posed 

as a Multi-objective optimization problems (MOPs) in all ýelds of engineering and science. Usually MOPs consist of more 

than two conþicting objective functions and that demand trade-oǟ solutions. Multi-objective evolutionary algorithms (MOEAs) 

are extremely useful and well-suited for solving MOPs due to population based nature.MOEAs evolve its population of 

solutions in a natural way and searched for compromise solutions in single simulation run unlike traditional methods. These 

algorithms make use of  various intrinsic search operators in eǣcient manners. In this paper, we experimentally study the 

impact of diǟerent multiple crossovers in multi-objective evolutionary algorithm based on decomposition (MOEA/D) 

framework and evaluate its performance over test instances  of 2009 IEEE congress on evolutionary computation (CECô09) 

developed for MOEAs competition. Based on our carried out  experiment, we observe that used  variation operators are 

considered to main source to improve the algorithmic performance of  MOEA/D  for dealing with  CECô09 complicated  test 

problems. 
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1. INTRODUCTION 
Optimization is process of ýnding the most or best satiable 

solution for optimization and search problems. Practical 

application of optimization begun much before the Second 

World War where the distribution of forces in battlefield  and 

allocation accessories to them in well organized and optimal 

manner were quite  necessitated at that times. In essence, 

optimization problems can be divided into two main 

categories: combinatorial and continuous problems. A 

problems with continuous variables  are called continuous 

problem and problems with discrete variables are called 

combinatorial optimization problem. Travelling salesman 

problem (TSP) [11] and  minimum spanning tree problems 

(MST) [64] are widely used combinatorial optimization 

problems.Several other paractical application of 

combinatorial optimization including the development of best 

airline network of spokes and destinations, deciding which 

taxis in a þeet to route to pick up fares, network design for 

telephone, electrical, hydraulic, TV cable, computer and  road 

to deliver packages.  Multi-objective optimization is the 

process of ýnding a set of  optimal  solutions for search and 

optimization problems. Many real-world problems are 

naturally arise in form of multi-objective optimization 

problems (MOPs) [9]. These problems offer  big challenges 

for both researchers and practitioners in all discipline of 

sciences and engineering.  Examples of real-world are 

extensively studied  in the existing literature of the 

evolutionary computing (EC) [59, 6, 8, 73, 54, 2]. In general, 

MOP can be  mathematically  formulated as under: 

ὓὭὲὭᾀὩ Ὂὼ Ὢὼ Ὢὼ ỄὪ ὼ           (1) 
Subjected to  ὼ ɴ   

Where ɋ is the decision variable space, ὼ ὼȟὼȟȣὼ  

is decision variable vector/ individual with ὲ decision 

variables,  Ὑ  is the objective space containing ά  

conflicting objective functions. If ɋ is closed, connected in 

region Ὑ  and all their objective functions are continuous 

then problem (1) is said to be continuous MOP [32]. In 

addition, if ά σȟ then problem (1) is said to be many 

objective optimization problem.   

A solution ό όȟόȟȣό ᶰ  is said to be Pareto 

optimal if there does not exist another solution ὺ
ὺȟὺȟȣὺ ᶰ   such that Ὢό Ὢὺ for all  Ὦ

ρȟςȟȢȢά  and   Ὢό Ὢὺ for at least one index Ὧ. An 

objective vector is said to be Pareto optimal if their 

corresponding decision vector is Pareto optimal in decision 

space. All the Pareto optimal solutions in the decision space 

of the targeted problem is called Pareto set (PS) and their 

image in objective space is called Pareto front (PF) [13]. This 

idea of Pareto optimality was ýrst proposed by Francis 

Ysidro Edgeworth in 1881 [17] and then later on generalized 

by Vilfredo Pareto in 1986 [7]. The primarily goals in 

tackling MOP is to ýnd their approximated set of optimal 

solutions that much closer to their true Pareto front (PF), and 

also the approximated solutions should desirably uniformly 

distribute along the true PF with high density.  

Multi-objective evolutionary algorithms (MOEAs) are well-

known population based techniques for dealing with diverse 

sets of test MOPs and real-world problems. In last two 

decades, many diǟerent types of evolutionary algorithms 

(EAs) have been developed in the specialized literature of 

evolutionary computing [73, 39, 31,78] and they are 

successfully applied on diǟerent complicated optimization 

and search problems [66, 50, 27, 37, 37, 6, 20, 33]. In 

general, classical MOEAs can be divided into three main 

families based on selection rules of candidate solutions:1) 

Aggregation functions based MOEAs (i.e.,[25, 24, 46, 67, 32, 

69]), 2) dominance-based approaches ( e.g.,[15, 74, 21, 47, 

23, 22]), 3) Indicator based EAs (IBEA) [76, 4, 3]. In last 

mentioned above two groups, decomposition concept is not 

purely used and they treat a given MOP as a whole or 

directly. On the other hand, aggregation based EAs associate 

their solutions of population with scalar optimization 

problem. 
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MOEA/D: multi-objective evolutionary algorithm based on 

decomposition [67] is novel aggregation based MOEAs that 

decomposes the given MOP into a number of diǟerent scalar 

optimization subproblems (SOPs). It then optimizes all SOPs 

simultaneously using generic population-based algorithm. 

Recently, several enhanced versions of MOEA/D have been 

suggested in the existing literature of EC [35, 38]. In [32], 

two diǟerent neighbourhoods systems along with restricted 

replacement strategy have been introduced for solving 

complicated test problems. Diǟerent subproblems of 

MOEA/D [67] were required diǟerent amounts of 

computational resources. A strategy of dynamical resource 

allocation have been introduced in [69] and with induction of 

this strategy MOEA/D-DRA [69] has been nominated as the 

winner of MOEAs competition. Gaussian Process Model has 

been integrated in original MOEA/D [67] to handle an 

expensive MOPs [70]. In [51], each subproblem records more 

than one solution for maintaining search diversity in their 

population. 

In [30, 40, 36, 41], multiple diǟerent search operators with 

novel dynamic resources allocation strategies have been 

introduced in MOEA/D paradigm for solving commonly used 

ZDT test problems [75] and recently formulated complicated 

CECô09 test instances [71]. In [42, 34], a combination of 

MOEA/D and NSGA-II has been suggested in the form of 

multimethod for coping with hard multi-objective 

optimization problems. Two diǟerent aggregation functions 

have been integrated at the same time in MOEA/D 

framework [26] for combinatorial MOPs. A new NBI-style 

Tchebycheǟ approach has been adopted in [68] coping with 

portfolio optimization problems. A decomposition-based 

multi-objective evolutionary algorithm with an ensemble of 

neighbourhood sizes (ENS-MOEA/D) has been proposed for 

solving CECô09 test instance [72]. In ENS-MOEA/D, 

ensemble strategy of using two neighbourhood sizes (NSs) 

with online self-adaptation procedure has been proposed for 

the purpose to overcome the user-speciýc tuning parameter of 

neighbourhood size (T) adopted in the MOEA/D framework 

[69]. In [29], ant colony optimization (ACO) has been 

incorporated as local search technique in MOEA/D paradigm 

for solving the multi-objective Knapsack problems (MOKPs) 

and the multi-objective traveling salesman problem (MTSPs). 

The strategy of adaptive weight vector adjustment in 

MOEA/D has introduced and the proposed algorithm has 

been denoted by (MOEA/D-AWA) in [55]. The original 

MOEA/D paradigm is based on ýxed weight vectors 

mechanism. In [36, 41], diǟerential evolution and particle 

swarm optimization have been used for population evolution 

with adaptive procedure in the framework of original 

MOEA/D [67] for solving the ZDT test problems [75] and 

CECô09 test instances [71]. In [40], a decomposition based 

hybrid evolutionary algorithm with dynamic resources 

allocation has been developed for solving the CECô09 test 

instances. Recently, several latest versions of MOEA/D have 

been reviewed in the [30]. 

Diǟerent crossover operatorôs suite diǟerent optimization and 

search problems. One operator can be suitable for one types 

of problems that might be not suitable for other types of 

problems. In general, the performance of EAs are greatly 

eǟected with the employment of diǟerent evolutionary 

operators.  

In the last two decades, diǟerent types of crossover operators 

have been proposed such as BLX-a [19], simulated binary 

crossover (SBX) [28, 45], simplex crossover (SPX) [5, 62], 

centre of mass crossover (CMX) [60, 61], unimodal normally 

distributed crossover (UNDX) [48, 49], parent-centric 

crossover (PCX) [14], and many other real coded crossover 

operators [13, 53]. Many studies regarding the eǟects of the 

use diǟerent multiple crossovers have been already studied 

using single objective problems (SOPs) [58, 63, 65, 16]. 

However, very few research studies have been conducted 

with the same line for dealing with MOPs. Therefore, it is 

reasonable for us to experimentally analysis the impact of 

diǟerent multiple crossover operators. We employ CMX [60, 

61], (SPX) [5, 62], adaptive DE [56], PCX [14], modiýed 

PCX (MPCX) [1] and quadratic interpolation crossover 

(QIX) in the framework of the MOEA/D [69] and examine 

their behaviours using the complicated CECô09 test instances 

[71]. 

In this paper, our main objective is not to develop a novel 

search algorithm. We  empirically examine the behaviours of 

diǟerent multiple crossovers one by one in existing  

MOEA/D [69] framework using the IEEE CEC ô09 test 

instances [71]. Our hypothesis is that the performance of  

MOEA/D are greatly dependable on  search operators . 

The rest of this paper is organized as follows. Section 2 

describes mathematical formulation of diǟerent employed 

crossover operators. Section 3 provides the algorithm of 

MOEA/D. Section 4.3 dedicated to experimental set up and 

discussion. Section 5 concludes this paper. 

2. Crossovers 

In essence, crossover operators  enhance the exploration 

search abilities of  EAs . On the other hand,  mutation 

operators  promoted the diversity in population of EAs  to 

escape its population to get stuck in local optima of  the 

problem. A crossover operator operates on more than one 

parent solutions while mutation applies to single solution.  In 

past many years, variety of crossover and mutation operators 

have been designed by many researches in the existing 

literature of evolutionary computing consist of four classical 

paradigms: genetic algorithm (GA), genetic programming 

(GP), evolutionary strategy (ES) and evolutionary 

programming (EP). In following, we explain some those 

crossovers which are employed in the study of this paper. 

2.1 Simplex Crossover (SPX) 
   SPX operates on three solutions, ὼȟὼȟὼ and   generate 

three new solutions (i.e., offspring) as   follows: 

               ◐▓ Ⱳ●▓ ╞ȟ▓ ȟȟ          (3) 

Where ὕ В ὼ is the centre of mass and ‏  π is the 

scaling parameter that controls the expansion of the simplex. 

In our implementation, an offspring solution is produced as 

follow [60]: 

           ◑ В ►▓◐▓▓ ╞ȟ       (3) 

                     В ►▓▓            (4)               

Where ὶ are Ὧ random numbers and must be   greater than 

zero. 
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2.2 Centre of Mass Crossover (CMX) 

Given three parent solutions, ὼȟὼȟὼȟ then CMX works as 

follow 

Á Compute the centre of mass 

              ╞ В ●░░              (6) 

 Then create a set of virtual mates by mirroring each parent 

across the centre of mas as: 

        ○▒ ╞ ●░                 (7) 

In this paper, we have selected randomly both virtual mate ὺ 

and parent ὼ to generate an offspring solution as under  

       ◐ ♪●░ ○▒         (8) 

Here, we have used  ‌ ςὶ πȢυ, ὶ is the   random number 

belongs to  πȟρȢ 
2.3 Diǟerential Evolution 

Diǟerential evolution (DE) is a reliable and versatile 

optimizer. It was developed by proposed by Storn and Price 

[56, 57] for continuous problems. Since then, it has been 

successfully applied to diverse set of test and real-world 

optimization problems. DE has many enhanced versions 

which are recently reviewed in [39]. DE has two control 

parameters, F and CR and have had great inþuence in their 

process of evolution. DE was came up with the idea of using 

vector diǟerences for perturbing the vector population. A 

simple mutation strategies of DE is formulated as fallow: 

    ◐ͯ ● ╕● ●)           (2) 

 Where ὼ and ὼ are two random solutions different from ὼ  

and Ὂ is the scaling factor which controls the difference of 

two solutions ὼ andὼ. An offspring solution ώ is generated 

as under  

   ◐
◐ͯ ░█ ◊► ╒╡

●  ▫◄▐▄►◌░▼▄
                (3) 

Here όᶰπȟρ is a uniformly random number. The values 

of Ὂ and ὅὙ are adaptively settled in our implementation (i.e. 

Ὂ ὅὙ 0.5(1+r), r denotes random number. For our 

convenience, we called it adaptive DE (ADE) in this paper. 

2.4 Parent Centric Crossover (PCX) 

PCX [14] is based on the formulation of the UNDX. It 

generates an offspring solutions as follows: 

       ◐ ●▬ ⱱȿ▀
▬ȿ В Ɫ╓▄

░          
░ ȟ░▬ (4) 

                                   ▀▬ ●▬ ▌                (5) 

Where  ὼ is a parent solution that selects with an equal 

probability for each oǟspring ώȟὫ is mean of ɛ parents, Ὀ  is 

the average perpendicular distance of the $ perpendicular 

distances of µ -1 parents, Ὡ ὥὶὩ µ-1 orthonormal bases that 

span the subspace perpendicular to direction vector Ὠ  and 

נּ נּ  πȢππρ are two parameters.  

2.5  Modified Parent Centric Crossover (MPCX) 
A modiýed PCX creates an oǟspring individual as follow [1]: 

 ώ
ὼ נּ ȿὨȿ В נּ ὈὩ  ὭὪ ό ρ  ȟ

ά נּ ȿὨȿ В נּ ὈὩȟ   έὸὬὩὶύὭίὩ
  (11) 

Where m is the mean of the entire population, Ὧ ρȟּנ

πȢππȟ  ּנ   
נּ

 and όᶰπȟρ is distributed random 

number. 

Ȣ Quadratic In terpolation Crossover 
  Quadratic Interpolation Crossover (QIX) has been 

implemented in particle swarm optimization (PSO) [52]. It 

works as follows: 

ώ    (13) 

Where Ὣὼ ȟὫὼȟὫὼ  are the single values of the 

solutions, ὼ, ὼ,  ὼ respectively. 

3 Multi-objective Evolutionary Algorithm Based on 
Decomposition: MOEA/D 
MOEA/D [67] normally applies the conventional aggregation 

functions such as weighted sum function, Tchebycheǟ 

function for converting the problem of approximation of the 

Pareto front (PF) into a number of scalar optimization 

problems To date, MOEA/D have many enhanced versions 

and they are successfully applied to MOPs with many 

objective functions, discrete decision variables and 

complicated Pareto sets [32, 69, 38, 35, 41, 36, 34]. 

There are many existing aggregation functions such as 

weighted sum approach [44], Tchebycheǟ function [44], 

Normal-boundary intersection method [10], Normalized 

Normal Constraint Method [43] and many others [18]. 

MOEA/D can use any of the aforementioned aggregation 

function. In this paper, we have used the Tchebycheǟ 

Function as described in equation (12). 

 ὓὭὲὭάὭᾀὩ  Ὣ άὥὼ ‗Ὢὼ ᾀᶻȿ   (12)    
  ×ÈÅÒÅ  ὼ ɴ  ȟʇ ‗ȟ‗ȟȣȢȢȟ‗ ȟ‗ πȟὮ ρȟȣȟάȟ

В ‗ ρ, ᾀ ᾀᶻȟᾀᶻȟȣȟᾀᶻ  is the reference point 

(i.e.,  ᾀᶻ ÍÉÎ Ὢὼȿ ὼ ɴ    for each    Ὦ ρȟςȟȣȟά. 

It is well known that, under mild conditions, for each Pareto 

optimal solution there exists a weight vector ‗ such that it is 

the optimal solutions to (12) and each optimal solution of 

(11) is a Pareto optimal solution of the problem (1). 

Let ‗ȟ‗ȟ‗ȟȣȢȟ‗ be the set of N weight vectors. 

Correspondingly, we have N single objective optimization 

sub-problems (SOPs), where the Ὥ  sub-problem is in 

equation (12) with ɚ= ‗. If N is reasonably large and the 

weight vectors, Let ‗ȟ‗ȟ‗ȟȣȢȟ‗are properly selected, 

then Pareto optimal solution to the SOPs deýned by the 

Tchebycheǟ function or any other decomposition function 

will provide a good set of ýnal optimal to the given problem 

(1). The framework of MOEA/D is herewith explain in 

Algorithm 1 and Algorithm 2, respectively. 
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Algorithm 1:  Framework of MOEA/D-DRA 

Input:  

1. MOP (1); 

2. a stopping criterion; 

3. N: the number of the sub-problems; 

4. a uniform spread of N weight vectors: ɚ 

5.  T: the number of the weight vectors in the neighbourhood of each weight vector. 

6. “ ρ, the utility function 

      Output: ╟╢ ὼȟὼȟὼȟȣȢȟὼ  Ǫ ╟╕ Ὂὼ ȟὊ ὼ ȟὊὼ ȣȢȟὊ ὼ   

Step 1 Initialization: 

                  Step 1.1: Compute the Euclidean distances between any two weight vectors to each weight vector.              

For each Ὥ ρȟςȟȣȟὔ, set    ὄὭ ὭȟὭȟȣȢȟὭȟ where ‗ȟ‗ȟȣȢȢȟ‗  and T are closest 

weight vectors to ‗. 

                  Step 1.2: Generate an initial population of size ὔȟ ὼȟὼȟὼȟȣȢȟὼȟ  uniformly and randomly sampling in 

the search space of the MOP (1). 

                   Step1.3: Initialize ᾀ ᾀȟᾀȟȣȟᾀ by setting ᾀ άὭὲ Ὢὼ ȟὪὼ ȟὪὼ ȟȣȢȟὪ ὼ   

                   Step 1.4: set ὫὩὲπ for all  Ὥ ρȟςȟȣȟὔ 

If  άέὨὫὩὲȟυπ π ;  

Update Ⱬ░ὭȢὩȢȟ█▫► ▀▄◄╪░■▼ ╢▄▄ ╪■▌▫►░◄▐□  

else “ ρ 
end 

      Step 2 Selection of Sub-problems for Search: the indices of the sub-problems whose objectives are MOP individual 

objectives f are selected to form initial Ὅ. By using 10-tournament selection based “  select other  ά  

Indices and add them to ὍȢ 
Step 3 for eachὭ ɴ  Ὅ, do: 

           Step 3.1: Selection of Mating/Update Range: Uniformly randomly generate a number rand from (0, 1). Then 

set 

                                                ὖ
ὄὭ  ὭὪ ὶὥὲὨ‏ 

ρȟςȟȣȟὔ έὸὬὩὶύὭίὩ
 

            

Step 3.2: Reproduction: Set ὶ ὭȟὶȟὶᶰὖȢ then apply crossover operator on three parent                

individuals, ὼ ȟὼ ȟὼ  to generate an oǟspring solution ώḧώ.  

           Step 3.3: Repair Method:  If the elements ώḧώ are out of the boundary of Ý, its value is reset to be a   

randomly selected value inside the boundary of problem. 

           Step 3.4: Update of z: For each j = 1, 2é, m, if ᾀ Ὢ(y), then set  ᾀ Ὢώ. 

           Step 3.5: Update of Neighbouring Solutions: Set c = 0 and then do the following: 

a) if   ὧ ὲ or P={} go to Step 4 else  randomly pick an index Ὦ from ὖ; 

b) if Ὣώȿ‗,z)  Ὣὼȿ‗,z), then set ὼ ώ;  Ὂὼ Ὂώ; ὧ ὧ ρȠ 
c) Delete j from ὖ and go to a). 

 

 Step 4 gen=gen+1;        

 Step 5 If stopping criteria is satisýed, then stop and give output 
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Algorithm 2: Dynamic Resources Allocation to Sub-problems 

 

If gen is a multiple of 50, then compute Ў, the relative decrease in the single objective values for each 

sub-problem Ὥ during the last 50 generations are updated according to the utility function as under: 

“

ρ       ὭὪ  Ў πȢππρ 

πȢωυ  πȢπυ
Ў

πȢππρ
 έὸὬὩὶύὭίὩ

 

end if 

Go to Step 2 of the Algorithm1 

In Step 4 of the Algorithm 1, the relative decrease is deýned as 

Ў , where   έὰὨέὰὨ ὪόὲὧὸὭέὲ ὺὥὰόὩ 

and  ὈὭὪὪέὰὨ ὪόὲὧὸὭέὲ ὺὥὰόὩὲὩύ ὪόὲὧὸὭέὲ ὺὥὰόὩ.   If Ў is smaller than 0.001, the value of 

“will be reduced.  

 

In 10-tournament selection in Step 2 of the Algorithm 1, the index with the highest “ values from 10- 

uniformly randomly selected indexes are chosen to enter I. We should do this selection  ά times. 

 

In Step 3.2, diǟerent crossover operators followed by the polynomial mutation are used for creating an 

offspring population in the algorithm 1. The polynomial mutation [59] is formulated as follow: 

 

           ◐▓
◐▓ Ɑ▓◊▓ ■▓ȟ◌░◄▐  ▬□ 
◐▓ȟ◌░◄▐  ▬►▫╫╪╫░■◄◐ ▬□ 

             (13) 

 

            Ɑ▓
►╪▪▀Ɫ ȟ░█ ►╪▪▀ Ȣ    

►╪▪▀Ɫ ȟ▫◄▐▄►◌░▼▄ 

  (14) 

 Where ὰ and ό are the lower and lower bound of the Ὧ  decision variable, – is the distribution index, 

ὴ  is the probability of mutation and ὶὥὲὨɴπȟρ is uniformly random number. 

 

 
3 SIMULATION RESULTS AND COMPARATIVE 

ANALYSIS 
The selection of test suite functions with multi-modality, 

deception, isolation and particularly the location of true 

Pareto-optimal front are important for the comparative 

analysis of algorithms. The global optima of the benchmark 

functions formulated in [75, 12] which are either lying in the 

centre of the search range or along their respective bounds. 

Mostly, the functions in this test suite are comparatively very 

simple compared to the test instances which are recently 

designed in the special session of MOEAs competition of the 

2009 IEEE Congress on Evolutionary Computation 

(CECô09). The CECô09 test instances [71]. 

 have been covered an extension, stretching and rotation in 

their respective objective functions. We have chosen ten 

unconstrained problems from this test suite in our 

comparative analysis. All these problems should be treated as 

black-box problems, i.e., the mathematical formulations of 

these problems could not use in our suggested algorithms. 

The nature of the Pareto optimal fronts these problems are 

described in the Table 1. The reference data sets and their 

Matlab source code can be downloaded freely from the both 
links:    http://www.ntu.edu.sg/home/EPNSugan. 

 

 
 

4.1 Performance Metrics 
In general, the quality of final approximated set of non-

dominated solutions produced by speciýc MOEA are 

measure in terms of proximity and diversity improvements 

with help of different performance indicators. Proximity 

depicts the closeness of approximated non-dominated 

solutions against true Pareto front (PF), whereas diversity 

http://www.ntu.edu.sg/home/EPNSugan
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measures that wether the ýnal approximated set of multiple 

solutions are uniformaly distribitive  and speard  all along the 

whole true PF of problem at hand. In our experimental 

comparative analysis, we have chosen the Inverted 

generational distance (IGD) [77] as a performance indicator 

as shown in the ýgure 1 because it shown both convergence 

and diversity at the same time subject to availability of 

reference  data set of MOPs test suites. 

 

 
Figure 1: Inverted generational distance (IGD). 

All black points (i.e., down) are Pareto solutions uniformly 

distributed along the RPF. All the blue solution points (i.e., 

above) are produced by an algorithm. 

Let ὖᶻ be a set of uniformly distributed points along the true/ 

real PF (RPF). Let ὃ be an approximate set to the RPF, the 

average distance from P to A calculated as under: 

╓═ȟ╟
В ▀○ȟ═○ɴ ╟z

ȿ╟zȿ
                (13) 

Where Ὠὺȟὃ is the minimum Euclidean distance between 

v ὖɴᶻ and the points belongs to  approximated set  ὃȢ If ὖᶻ is 

large enough, then it will be represent the PF very well, 

Ὀὃȟὖ could measure both the diversity and convergence of 

A in a sense. In this study, we have used ὖᶻ=1000 of 

uniformly spaced solutions to measure the Euclidean distance 

between   approximate Pareto-optimal and true PF using 

equation (13). A smaller IGD-metric values implies a better 

convergence toward the Pareto-optimal front. 

4.1  Weight Vectors Selection   
 A set of N weight vectors are generated as per criteria 

given below. 

1. Uniformly randomly generate 5, 000 weight vectors for 

forming the set W1. Set W is initialized as the set 

containing all the weight vectors  

ρȟπȟȢȢȢȟπȟπȟπȟρȟȢȢȢȟπȟπȟȢȢȢȟπȟπȟȢȢȢȟπȟρȢ 
2. Find the weight vector in set ὡρ with the largest 

distance to set ὡ, add it to set W and delete it from set 

W1. 

If the size of set ὡ is ὔȟ stop and return set ὡȢ 
Otherwise, go to 2). 

 

4.2 Algorithmic Parameters Settings 

Á Operating system: Windows XP Professional. 

Á Programming language of the algorithms:       

Matlab 

Á .CPU: Core 2 Quad 2.4 GHz. RAM: 4 GB DDR2 

1066 MHz 

Á Execution: 30 independent runs with diǟerent random 

seeds. 

Á ὔ  φππ: Population size for 2-objective test 

instances. 

Á ὔ  ρπππȡ Population size for 3-objective test 

instances. 

Á  Ὕ  πȢρὔȡ The neighbourhood size for each sub-

problem. 

Á ὴ :   is the probability mutation, where n = 30, 

the size of decision variables. 

Á  ɖ = 20: the distribution index, used in polynomial 

mutation. 

Á Function evaluations: Each algorithm stops after 

300,000; 

Á The maximum number of solutions for IGD-metric 

values measurements: 100 for2-objective test 

instances and 150 for 3-objective test instances. 

Á Ὂ ὅὙ 0.5(1+r), where r is the random number. 

Á PCXôs parameters: ּנ נּ πȢππρ. 

Á MPCXôs parameters:  ּנ πȢππς    and ּנ   
נּ

 

4.3 Discussion of the Experimental Results 
  Several existing algorithms have been applied on the 

CECô09 test MOPs [71]. In this paper, We   have suggested 

six diǟerent versions of MOEA/D [69] by employing six 

crossover only abbreviated as  1) MOEA/D-CMX, 2) 

MOEA/D-SPX, 3) MOEA/D-ADE, 4) MOEA/D-PCX, 5) 

MOEA/D-MPCX 6) MOEA/D-QIX.  

  We have executed all our suggested algorithms 30 times 

independently to solve each CECô09 test instance [71] with 

diǟerent random seeds. The IGD-metric values in 30 

independent runs found by MOEA/D-CMX are listed in 

TABLE 3 for each CECô09 test instance [71]. TABLE 2 

provides the IGD-metric values obtained by MOEA/D-SPX 

for each test problem. The parameter settings regarding SPX 

are given in the last column of the TABLE 2. Tables 4 and 

TABLE 5 furnish the IGD-metrics in terms of smallest 

(minimum/best), median, mean, standard deviation (std) and 

largest (maximum/worst) with respect to MOEA/D-ADE 

and MOEA/D-PCX, respectively. TABLE 5 also provides 

parameter settings which are used in PCX implementation 

and formulation. The control parameters F and CR of DE 

are settled adaptively as like (i.e., F = CR = 0.5(1 + rand)). 

TABLE 6 and TABLE 7 summarise the IGD-metric values 

got by MOEA/D-MPCX and MOEA/D-QIX for each 

CECô09 test instance [71]. From TABLE 7, one can easily 

conclude that the algorithmic performances MOEA/D [69] 

are quite deteriorated by integration QIX in its framework 

over almost all test problems. The same problems was 

happened with PCX and MPCX as well as compared to other 

used crossovers. Figures 2-3-4 demonstrate the best 

approximated PF brought forth by MOEA/D-CMX, 

MOEA/D-SPX, MOEA/D-ADE and MOEA/D-QIX for each 

CECô09 test instance [71], respectively. A Figure 5 provides 

the best PF approximated by MOEA/D-QIX obtained for 

UF1-UF3 and UF7. MOEA/D-QIX has not properly tackled 

the rest problems, UF4-UF6 and UF8-UF10. Therefore, we 

did not include the ýgures of their IGD-metric values in this 

paper. 
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Figure 2: Plots of the approximated Pareto Front display by MOEA/D-CMX in its best run among 30 independent runs over CECô09 

test instances. 

 

In Figures 6-7, we have plotted all 30 PFs altogether granted 

by MOEA/DCMX and MOEA/D-SPX. These ýgures clearly 

demonstrate the distribution ranges accomplished by 

MOEA/D-CMX and MOEA/D-SPX are much better than 

other candidates on almost all CECô09 test instance. The 

ýgures of the UF5 and UF6 are included in this paper. 

Figure 8-9 depict the less average evolution in IGD- metric 

values in MOEA/DCMX, 

MOEA/D-SPX and MOEA/D-ADE and MOEA/D-PCX over 

UF1UF10. 

Based on the experimental results presented in this paper, we 

are conýdent by saying that CMX, SPX and ADE more 

better operators as compared to PCX, MPCX and QIX 

dealing with CECô09 test instances [71]. 
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Table 2: The IGD-metric values of the MOEA/D-SPX for UF1-

UF10. 

 

 

 

 

 
Table 5: The IGD-metric values gathered by MOEA/D-

PCX with parameters (i.e. ⱱ =0.001 ) 

 

 
 



Sci.Int.(Lahore),27(6),4943-4956,2015 ISSN 1013-5316; CODEN: SINTE 8 4951 

Nov.-Dec 

 
Figure 3: Plots of the approximated Pareto Front display by MOEA/D-SPX in its best run among 30 independent runs over CECô09 

test instances. 

 
Figure 4: Plots of the approximated Pareto Front display by MOEA/D-ADE in its best run among 30 independent runs over CECô09 

test instances. 
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Figure 5: Plots of the approximated Pareto Front display by MOEA/D-QIX in its best run among 30 independent runs over UF1-UF3 

and UF7 test instances. 

 

 
Figure 6: Plots of the 30 approximated Pareto Fronts of MOEA/D-CMX altogether for CECô09 test instances. 

 
 Figure 7: Plots of the 30 approximated Pareto Fronts of MOEA/D-SPX altogether for CECô09 test instances. 


