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ABSTRACT. Multi-objective optimization has become mainstream because segakalorld problems are naturally posed
as a Multiobjective optimizatiop r obl ems ( MOPs) in al/l yel ds o fcongshag mereeer i n
t han t wo c otiveffuinatidns amdythabdemaedde-o4 solutions.Multi-objective evolutionary algorithm@® OEAS)
are extremely useful and wallited for solving MOPs due toopulation based nature. MOEA&/olve its population of
solutionsin a natural way and searched for compromise solutions in single simulatioanlike traditional methods. These
algorithms make use of variourstrinsic search operators ing&cient manners. In this paper, vexperimentally study the
impact of diderent multiple crossovers imulti-objective evolutionary algorithm based on decompositibfOEA/D)
framework and evaluate its performance otest instancesof 2009 IEEE congress n ev ol uti onary compu
developedfor MOEAs competitionBasedon our carried out experiment, we observe that used variation operators are
considered to main source to improve the algorithmic performance of MOEA®Dr deal i ng wi th CECOO
problems.

Keywords: Multi-objective optimization mblems(MOPs) Evolutionary AlgorithmgEAs), Decomposition, Crossovers

1. INTRODUCTION addition, if & ofthen problem (1) is said to be many
Optimization isprocesso f y nd i n gr besh satiabteo abjective optimization problem.
solution for optimization and searcproblens. Practical A soluton 6 6 Bo6 is said to be Pareto
application of optimization begun much be# the Second optimal if there does not exist another solutian
World War wherehe distribution of forces in batfield and o Bo such that™Qé "QuU for all Q
allocationaccessaesto themin well organized and optimal pigfggY and "Q6  "QU for at least one indeR An
manner werequite necessitatedat that timesin essence, gpiective vector is said to be Pareto optimal if their

optimization problems can be divided into two mainyopresponding decision vector is Pareto optimal in decision
categories: combinatorial and ~continuous problen®  gpace Al the Pareto optimal solutions in the decision space
problens with continuous varialels arecalled continuous f the targeted problem is called Pareto set (PS) and their
problem andproblems with discrete variables acalled  jmage in objetive space is called Pareto front (PF) [13]. This
combinatorial optimization problem. Travelling saiman ; 4 e 4 o f Pareto optimality was
problem (TSP) [11] andminimum spanning tree problems yjqr Edgeworth in 1881 [17] and then later on generalized
(MST) [64] are widely used combinatorial optimization by Vilfredo Pareto in 1986 [7]. The primarily goals in
prodems.Several other  paractical — application of {3 c k| i ng MOP i s mated sgtrodoptinal e i r
combinatorial ptimizationincluding the development of best s|tions that much closer to their true Pareto front (PF), and
airline network of spokes and destinations, deciding whichso the approximated solutions should desirably uniformly

t axi seetitmroute tofpick up faresetwork design for gistripyte along the true PF with high density.

telephone, electricahydraulic, TV cat#, computer andoad — yytj-objective evolutionary algorithms (MOEAs) are well

to deliver packages. Multbjective optimizéon is the nown population based techniquésr dealing with diverse
process of ynding a seaichand g cbfptgst MEPs and Sr&britl foroles Inf1&two
optimization problems. Many reaorld problems are yecades, many @erent types of evolutimry algorithms
naturally arise in form of multi-objective optination (gEas) have beerdeveloped in the specialized literature of
problems (MOPs) [9] These problemsffer big challengs evolutionary computing [73, 39, 1378] and they are

for both researchers and practitioners in all disciplifie %uccessfully applied on @érent complicated optimization
sciences and engineering.Examples of reaworld are .4 cearch problems [66, 50, 27, 37, 37, 6, 28]. 3n

extensively studied in the existing literatureof the general classical MOEAsan be divided into three main
evolutionary computing (ECBS, 6,8, 73, 54, 2]In general, ¢;milies basedon selection rules of candidasslutions:1)

MOP can be mathematicallformulated as under: Aggregdion functions based MOEAs (i.e.,[25, 24, &4, 32,
L Qe m‘ Qv Qo EQ® @ 69]), 2) dominancebased approaches ( e.g.,[15, 24, 47,
Subjected tow " 23, 22]), 3) Indicatobased EAs (IBEA) [76, 4, 3]. In last

Where q is the dexichhBm v amehtdredabovesbays, decompositiconcept is not

is decision variable vector/ individual witll decision pure|y used and theyreat a given MOP as a whole or
variables, 'Y is the objective space containing  directly. On the other hand, aggregation laEés associate
conflicting objective f unc théiro soltions bff pogulatiors with | seafa€ @ptimizat@dm n e c t
region’Y and all their objective functions are continuousroblem.

then problem(1) is said to be continuous MOP [32]. In
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MOEA/D: multi-objective evolutionary algorithm based onedected with the employment of &krent evolutinary
decomposition [67] is novel aggregatibased MOEAs that operators.

decomposes the given MOP into a number &edent scalar In the last two decades,&dirent types of crossover operators
optimization subproblems (SOPs). It then optimizes all SOPsve been proposed such as B&X19], simulated binary
simultaneously using generic populatibased algorithm. crossover (SBX) [28, 45], simplex crossover (SPX) [5, 62],
Recently, several enhanced versions of MOEA/D have beeantreof mass crossover (CMX) [60, 61], unimodal normally
suggestd in the existing literature of EC [35, 38]. In [32], distributed crossover (UNDX) [48, 49], pare@ntric

two diderent neighbourhoods systems along with restrictaztossover (PCX) [14], and many other real coded crossover
replacement strategy have been introduced for solvimgperators [13, 53]. Many studies regarding theats of the
complicated test problems. &drent subproblems of use déerent multiple crossovers have been already studied
MOEA/D [67] were required dierent amonts of using single objective pldems (SOPs) [58, 63, 65, 16].
computational resources. A strategy of dynamical resourétowever, very few research studies have been conducted
allocation have been introduced in [69] and with induction ofith the same line for dealing with MOPs. Therefore, it is
this strategy MOEA/BEDRA [69] has been nominated as thereasonable for us to experimentally analysis the impact of
winner of MOEAs competition. Gaussian Process Model haiderent multiple crossover operators. We employ CMX,
been integratedni original MOEA/D [67] to handle an 6 1] , ( SPX) [ 5, 62], adaptive
expensive MOPs [70]. In [51], each subproblem records moRCX (MPCX) [1] and quadratic interpolation crossover
than one solution for maintaining search diversity in theifQIX) in the framework of the MOEA/D [69] and examine
population. their behaviours wusing the com
In [30, 40, 36, 41], multiple dierent search operators with[71].

novel dynamic resources atlation strategies have beenin this paper, our ain objective is not to develop a novel
introduced in MOEA/D paradigm for solving commonly usedearchalgorithm We empirically examine thébehavioursof

ZDT test problems [75] and recently formulated complicatediderent multiple crossovers one by one in existing
CECO609 test instances [ 71]MOEA/h [69] #atneworB 4sjng thetEEECc ©EQIH 0 ® a ttieosnt
MOEA/D and NSGAII has been suggested in the form ofinstances[71]. Our hypothesis is that the pemmance of
multimethod for coping with hard muiobjective MOEA/D are greatly dependable on search operators
optimization problems. Two dierent aggregation functions The rest of this paper is organized as followsct®n 2
have been integrated at the same time in MOEA/Qescribes mathematicdbrmulation of déerent employed
framework [26] for combinatorial MOPs. A new NBtyle crossove operators. Section 3 providake algorithm of
Tchebychd approach has been adopted in [68]ingpwith  MOEA/D. Section 4.3dedicated to experimental set apd
portfolio optimization problems. A decompositibased discussion. Section 5 concludes this paper.

multi-objective evolutionary algorithm with an ensemble of 2. Crossovers

neighbourhoodizes (ENSMOEA/D) has been proposed for In essence, crossovaperators enhance the exploration
sol ving CECOb6009 t est -MOBEADt asearah abifitiés2df . EAsl .nOn tBeNdther handnutation
ensemble strategy of using two neighbourhood sizes (NSg)erators promoted thaiversity in population of EAs to

with online selfadaptation procedure has been proposed fescape & population to get stuck local optimaof the

the purpose to overcome the usep e ¢ i y @aramater of nggoblem. A crossovepperatoroperateson more than one
neighbourhood size (T) adopted in the MOEA/D frameworkarent saltions while mutation applies &ingle solution.In

[69]. In [29], ant colony optimization(/ACO) has been past many yearsariety of crossover and mutatiaperators
incorporated as local search technique in MOEA/D paradighave been designed by many researches inettisting

for solving the multiobjective Knapsack problems (MOKPs)literature ofevolutionary computing consist éur classical

and the multiobjective traveling salesman problem (MTSPs)paradigms: genetic algorithm (GA), genetic programming
The strategy of adaptive weight vector adjustment i(GP), evolutionary strategy (ES) dn evolutionary
MOEA/D has introduced and the proposed algorithm hawogramming (EP).In following, we explain some those
been denoted by (MOEAHAWA) in [55]. The original crossovers which are employed in the study of this paper.
MOEA/D paradigmi s based on y x e 2.1 SingplexgCnossovey (SRX) o r s

mechanim. In [36, 41], dierential evolution and particle SPX operates on three solutioash ¢ Féy and  generate
swarm optimization have been used for population evolutionthree new solutions (i.e., offspring) as follows

with adaptive procedure in the framework of original " W el E A h (3)

MOEA/D [67] for solving theZDT test problems [75] and \yhere | ¢ is the centre of mass ahd T is the
CEC609 test i nst decanpositof basedl gcqjidg ri!)ara&nété}1 {hat cotrols the expansion of the simplex.
hybrid  evolutionary algorithm with dynamic resourcegy gy |mplementat|on an offspring solutlon |Sé)roduced as
all ocation has been de9&a$to,g||gv\¢[60]or solving t

instances. Recently, sevefatest versions of MOEA/D have » Be M E ki (3)

been reviewed in the [30]. ' oE (4)

Diderentcrossoven p e r asiit® daérent opimization and
Wherei are Qrandom numbers and must be greater than
search problem€ne operator can be suitable for one types

of problems that might be not suitable for other types
problems. In general, the performance of EAs are greatly
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2.2 Centre of Mass Crossover (CMX) A Computethe centre of mass

Given three parent solution®,h w ho hthen CMX works as F -B. o (6)

follow '

Then create a set of virtual mates by mirroring each paretWhere m is the mean of the entire population, pha

across the centre of mas as: T8t f1 2 1 and 6 mip is distributed random
° Foe (7) number.

In this paper, we have selected randomly both virtual rinate
and parentv to generate an offspring solution as under

. ) ol oF ®
Here, we have used ¢i 1@, 1 is the random number
belongs to Tip 8
2.3 Diderential Evolution 0 (13)
Diaerential evolution (DE) is a reliable and versatilgynere Q¢ Q0 Qo  are the single values of the
optimizer. It was developed by proposed by Storn and Pri%%lutions,cb, @, & respectively.

[56, 57]ff?|r contilnu(j)uts %_oblemsSirgceft?erl, it Qas k}gen 3 Multi-objective Evolutionary Algorithm Based on
successfully applied to diverse set of test and-wesl Decomposition: MOEA/D

optimization problems. DE has many enhanced version&OEA/D 671 normallv applies theonventonal agaregation
which are recently reviewed if89]. DE has two control functions[su]cHas w)(/ai ?Jt)el(g sum \flnction %?:hegb el"ahe

parameters, F and CR and hfﬁn\éti%n fol?go vertﬂwgﬁt eap oblém p}*o‘?(irq'\éii& ontH% the

process of evolution. DE was came up with the idea of usi reto front (PF)into a number of scalar optimization

vector dﬁere_nces for perturbing_ the vectpopulation. A problemsTo date, MOEA/D have mangnhanced versions
simple mutation strategies of DE is formulated as fallow: and they ee successfully apjgd to MOPs with many

¢ e qe o) @) , , . objective functions, discrete decisionvariables and
Wherew andw are two random solutions different fromn complicated Pareto sets [32, 69, 38, 35, 41, 36, 34].

and "Os the scaling factor which controls the difference ofpere are many existing aggregatidanctions such as

two solutionsw andb . An offspring solutionwis generated weighted sum approach44], Tchebych& function [44],

as und?[ Normatboundary intersection method10], Normalized

guadratic Interpolation Crossover

Quadratic Interpolation Crossover (QIX) has been
implemented in particle swarm optimization (PSO) [52]. It
works as follows:

« l> |==| ©) Normal Constraint Method B} and many others [18].
,'N . l- > o VF MOEA/D can use any of the aforementioned aggregation
Here6 * Tip Is a uniformly random number. The valuesnction. In this paper, we havased the Tchebyche

of 'Oand6 "are adaptively settled in our implementation (i.egnction as described in aation (1.
"O 6'Y 0.5(1+r), r denotes random number. For our.

convenience, we called it adaptive DE (ADE) in this paper. v 98 Qa (!Z?Q( 0 wvwv = va 95 (sz)v, .
2.4 Parent Centric Crossover (PCX) xEAGA R _hLmah h mQ p8hoh
PCX [14] is based on the formulation of the UNDX. ItB _ p.& & hY M8 hY is the reference point
generates an offspring solutions as follows: (le., & [ ETQosmdn foreach Q plgh8 ho .
« o= " &~ B : "urm ©® It is well known that, under mild conditions, for each Pareto
el | (5) optimal solution there exists a weight vectosuch that it is

Where @ is a parent solution that selects with an equadhe optimal solutions to (32and each optimal solution of

probability for each aspringdiQi s mean o0® ise (1p)ais @ rPareto optimal solution of the problem (1).

the average perpendicular distance of §heerpendicular Let_h h B &_ be the set of N weight vectors.

distances of 1 parentsQ &1 [R1 orthonormal bases that Correspondingly, we have N single objective optimization

span the subspace perpendicular to direction vé@toand subproblems (SOPs), where th&® subproblem is in

3 3 T8 TT @re two parameters. equation (12 wi t=vhlvf l\vb~isvreasonably large and the

2.5 Modified Parent Centric Crossover (MPCX) weight vectors, Let h_h_fB &L are properly selected,

A modi yed P Caépringindiidtatas follow{l]:0 t hen Pareto optimal solution
®© 1 9Ds B 5 1 0000 p - Tc_hebycha funct|on_ or any other decomposition function

(12) wi || provide a good set of yna
a 1 Qs B 5 13 0Q ¢di 0Qi Q (). The framework of MOEA/D is herewith explain in
Algorithm 1 and Algorithm 2, respectively.
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Step 1 Initialization:

Step 3for eachi "Qdo:

Step 3.2:Reproduction:Seti " A ~ O&hen apply crossover operator on three parent

Algorithm 1: Framework of MOEA/DDRA

Input:
1. MOP (1);
2. astopping criterion;
3. N:the number of the sytroblems;
4. a uniform spread of N weight vectors: @&
5. T:the number of the weight vectors in the neighbourhood of each weight vector.
6. “ p, the utility function

Output: | ohomfB&m Oy "Oo FOoo 0w 8 &0

Step 1.1:Compute the Euclidean distances between any two weight vectors to each weight vector.
For eachQ plgh8 Ay, set 6 Q "CHOB &Q hwhere_ h_ M &h_ and T are closest
weight vectors tg .

Step 1.2:Generde an initial population of sizé ho ho o F8 &t huniformly and randomlgampling in

the search space of the MOP (1).

Stepl.3initializead ahx B M bysettingd & QEQw Qo Qo M &HQ

Step 1.4set’QQ ¢ mforall "'Q phcfB A)
If & &€ Q0 T

UpdateZ "&Bll- B «+{gwml - » <O

else” p
end
Step 2Selection of Sukproblems for Searchthe indices of the suproblems whose objectives are MOP individu
objectives f are selected to form initi@By using 1&ournament selection baséd select other — @

Indices and add them @

Step3.1: Selection of Mating/Update Rang&Jniformly randomly generate a number rand from (0, 1). Th
set
5 0 QQQBE Q
pltf8 M) ¢ &I 0 QI Q

individuals,® hw hw to generate an dspring solutioroh .
Step 3.3 Repair Method: If the elements&hh @ ar e out of the boundleay o
randomly selected value inside the boundary of problem.

Step 3.4UpdateofzFor each jifd= "Qy), thehdetr nMQw.

Step 3.5:Update of Neighbouring SolutionsSet ¢ = 0 and then do the following:
a) if @ & orP={}go toStep 4 elserandomly pick an indeXirom 0;
b) if " Qus_,zZ) "Qws ,z),thenseb @ 0w Ow;® & pN
c) Delete j fromd andgo toa).

Step 4gen=gen+1;
Step5l f stopping criteriaodtpsit sati syed, then stop a
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Algorithm 2: Dynamic Resources Allocation to Stgyoblems

If gen is a multiple of 5Qthen comput¥ , the relative decrease in the singlejective values for each
subproblem™@uring the last 50 generations are updagextording to the utility function as under:
p Q¥ mrnp

Yy
T8O L T[8tu—pé i 0 QI Q

T8 T
end if
Go to Step 2 of the Algorithm1
InStep4ofthdl gori thm 1, the relative decrease i
Y —— whereé a'Q¢ Q0 ¢ OdBOD Q

and 0 Q'Q'@ a0 & O D KD DEQ N0 & O ® BODIKY is smaller than 0.001, the value of
“ will be reduced.

In 10-tournament selection in Step 2 of the Algorithm 1, the index with the highedties from 10
uniformly randomly selected indexes are chosen to enter I. We should do this selectiai times.

In Step 3.2, dierent crossar operators followed by the polynomial mutation are used for creating
offspring population in the algorithm 1. The polynomial mutaf®] is formulated as follow:

- "0 «|mgro vm
Whereda and6 are the lower and lower bouyd of fie decision variable-is the distribution index,
f is the probability of mutation arid & éNQrip is uniformly random number.

3 SIMULATION RESULTS AND COMPARATIVE

ANALYSIS Table 1: Characteristics of the CEC'09 Test Instances.
The sglectic_)n of_ test suite fqnctions with rmni_tbdality, CEC'09 [ Objectives | Search space range | Characteristics of PF
deceptlon_, isolation and partlcularly the location of t_ru| UL 7 0,1 x [ L1 | Concave
Parete_opt|mal fr_ont are important f_or the comparative iy 9 0.1 % [T 1™ | Concave
analysis of algorithms. The global apt of the benchmark R 5 - 0T Concave
functions formulated in [75, 12] which are either lying in the 7 ; 1 ’H T | Comvex
centreof the search range or along their respective bounc ! o i
Mostly, the functions in this test suite are comparatively ver |59 2 0Ux| 11 21 point front
simple compared to the test instances which racently UF6 2 0,1 x[-1, 1" | One isolated point and
designed in the special session of MOEAs competition of t} two disconnected parts
2009 IEEE Congress on Evolutionary Computatior | UF7 2 [0, x [1,1" " | Continuous straight line
(CEC609). The CECH609 test i | U8 3 0,1 x [-2,2]"* | Parabolic
have been covered an extension, stretching and rotation UF9 3 0,1 x [-2,2]*% | Planar
their respective objective functions. We have chosen t¢ [ 3 0,17 x [-2,7" | Parabolic

unconstrained problems from this test suite in ow
comparative analysis. All these problems should be treatedf_sL Perf Metri
blackbox problems, i.e.the mathematical formulations of ' erformance VIetrics

these problems could not use in our suggested algorithnlgg general,the quality of final approximated set of an-

The nature of the Paretoptimal fronts these problems are ominat e d S.O.I utions ~pro duced
described in the Table 1. The reference dats and their Measurein terms of proximity and diversity improvements

Matlab source code can be downloaded freedynfthe both with help of different performance indicator®roximity

. . ) depicts the closeness ofpproxinated nordominated
links:  http://www.ntu.edu.sg/home/EPNSugan solutions againstrue Pareto front (PF), whereas diversity
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measureghat wether they n approximate set of multiple AD ¢ Tt Population size for -Bbjective test

solutionsare uniformaly distribitiveand speard alllong the instances.

whole true PF of problem at handIn our experimental AU p 1t @ Population size for -®bjective test

comparative analysis, we havehosen the Inverted instances.

generational distance (IGD) [77] as a performanakcator AY 10 dThe néghbourhood size for each sub
asshown n the ygure 1 because itprshkmwn both convergence

and diversity at the same time subject to availability of AR

> - is the probability mutation, where n = 30,
reference data set of MOPs test suites.

the size of decision variables.

Ad = 20: the distribution i
I t _ mutation.
A Function evaluations: Each algorithm stops after
300,000;

A The maximun number of solutions for IGInetric
values measurements: 100 faBjective test
instances and 150 fordbjective test instances

A0 6°'Y 0.5(1+r), where r is the random number.

APCX6s par amet @8ta.p

fi AMPCXds pal anrsutmneans i
_ _ _ ) 4.3 Discussion of the Experimental Results
Figure 1: Inverted generational distance (IGD). Several existing algorithms have been applied on the

All black points (i.e., down) are Pareto solutiamsiformly CECH09 test MOP s W§ havé suggdsted t hi s
distributed along the RPRII the _blue solutionpoints (i.e.,  gix diderent versions of MOEA/D [69] yoemploying six
above) are produced by an algorithm. crossover only abbreviated asl) MOEA/D-CMX, 2)

Let0* be a set of uniformly distributed points along the true/poEA/D- SPX, 3) MOEA/DADE, 4) MOEA/D-PCX, 5)
real PF (RPF). Leb be an approximate set to the RPF, thepmOEA/D-MPCX 6) MOEA/D-QIX.

average distance from P to A calculated as under: We have executed abur suggestedigorithms 30 times
r =hlt Bil% (13 independently to solve wittach CI

Where’Q R is the minimum Euclidean distance between diaerent random seeds. The IGmetric values in30

w b* and the pointbelongs to approximated seb8lf 0° is independent runfgound by MOEA/DCMX are listed in

large enough, then it will be represent the PF very weIIT ABLE 3 faor each (OHCOBIE 2t est

'0 6 could measure both the diversity and convergence OFrowdes the IGEmetric values obtained by MOEA’{BF.)X
A in a sense. In this study, we have uskd=1000 of or each test problem. The parameter settings regarding SPX

uniformly spaced solutions tmeasure th&uclidean distance are given in thdast column of thefABLE 2. Tables 4 and

between _ appromate Paretooptimal and true PF using (it c i B TR B TR L S
equation (13). A smaller IGInetric values implies a better m ' ’

. largest (maximum/worstwith respect to MOEA/RPADE
convergence toward the Pa_lremtlmal front. and MOEA/DPCX, respectively. TABLE 5 also provides
4.1 Weight Vectors Selection

A set of N weight vectors are generated as per criteria parameter sr—_zttmgwmch are usedn PCX implementation
given below. and formulation. The control parameters F and CR of DE

. . are settled adaptively as like (i.e., F = CR = 0.5(1 + rand)).
L %?g?;g'ﬁhr:”g;wxggg‘fr%e ii' %%?a;geet(jvzgtotﬁefosret TABLE 6 and TABLE 7 summarise the IGetric values
containing all the weight vectors got by MOEA/DMPCX and MOEA/BQIX for each

TR FesET T P C E C 6tesfinstance [71]. From TABLE 7, one can easily
P hrip rivteETip 8 conclude that the algorithmic performances MOEA/D [69]
2. Find the weight vector in setopwith the largest

are quite deteriorated by integration QIX in its framework

S\l/sltance to sab, add it to set W and delete it from S(atover almost all test problems. The same problems was
it th . f setd is GF st d ret 8 happened with PCX and MPCX a®ll as ompared to other
€ siz€ of Selw 1S LR stop and return se used crossovers.Figures 23-4 demonstrate the best

Otherwise, go to 2). approximated PF brought forth by MOEA{DMX,
T . MOEA/D-SPX, MOEA/D-ADE and MOEA/DQIX for each
4.2 Algorithmic Parameters Settings CEC609 test instance [71], fes

A Operating system: Windows XP Professional.

A Programming language of the algorlthmsthe best PF approximatedy MOEA/D-QIX obtained for

‘UF1-UF3 and UF7. MOEA/BQIX has not properly tackled

Matlab
" ) ) the rest problems, UFJF6 and UF8UF10. Therefore, we
A'l%zg'Mf_'OZre 2 Quad 2.4 GHz. RAM: 4 GB I:)DRZd i d not igoreslolutleidGDtmietac vajues inthis

A Execution: 30 independent runs wittidient random paper.

seeds.
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Figure 2: Plots of theapproximated Pareto Front display by MOEA/D-CMX i n i ts
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In Figures 67, we have plotted all 30 PFs altogether grantellOEA/D-SPX and MOEA/BADE and MOEA/DPCX over

by MOEA/DCMX and MOEA/DSP X. These vy @BWIES. cl early

demonstrate the distribution ranges accomplished Based on the experimental results presented in this paper, we
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Table 2: The IGBmetric values of the MOEA/ESPX for UFL
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Table 4: The IGD-metric values of the MOEA/D-ADE for UF1-UF1(.
MOEA/D-ADE with parameters ' = 0.5 (14 rand) = CR of DE.

MOEA/D with Sl;)'zl(laOEA/D-SPX) CEC'09| min median | mean std max
CECW| mn | medan | men | sd | ma | paameies UFL | 0.004847 | 0.010675 | 0.01099 | 0.003732 | 0.019072
00110 | 00620 | 00730 | 00480 | 01957 | 2+ yrand(l] UF2 | 0.005804 | 0.008230 | 0.008306 | 0.00155 |  0.012082
0007 | 00739 | 00788 | 005579 | 0228 | 1L Vi % UF3 | 0.006955 | 0.04685 | 0.044923 | 0.027546 | 0.093627
VRl sy T O35 036 | 0t [ 02 | T e UF4 | 0.039672 | 0.048962 | 0.051182 | 0.007402 | 0.064670
0.005077 | 0.008203 | 0.008652 | 0.004070 | 0.026533 | y/n 11 UF5 | 0.127310 | 0.270832 | 0.281138 | 0.087448 |  0.480050
0.0053 | 00069 | 0.0069 | 0.0011 | 0.0096 | I+ /(n—27) UF6 | 0.041672 | 0.172887 | 0.196197 | 0.155070 | 0.754536
UF2 [ 0.0076 | 00175 | 0.0184 | 00092 | 0.0405 | 1+y/rand(D) UF7 | 0.004898 | 0.008514 | 0.009190 | 0.003506 | 0.023703
0.004952 | 0.005596 | 0.005717 | 0.000487 | 0.007131 | v/n 1 UF8 | 0.068072 | 0.088657 | 0.087818 | 0.006782 |  0.102548
0018 | 00296 | 00356 | 0.0205 | 0.0864 | It /[n—27) U9 | 0.043128 [ 0.069057 | 0.087238 | 0.042770 |  0.177565
UF3 | 0.005455 | 0.022374 | 0.030286 | 0.03823 [0.091197] n+1 UF10 | 0.215141 | 0.344499 | 0.372537 | 0.107854 | 0.627219
004572 | 0.05558 | 0.05568 | 0.0049 | 0.0666 | L+/rand(l) Table 5 The IGBmetric val thered by MOEA/D
UF4 | 00502 | 00573 | 0.0573 | 00038 | 00657 | Vn+l aple o: The etric \fa ues~ga ered by
0049804 | 0.053895 | 0.054925 | 0.004185 | 0.060064 | v —5 PCX with parameter§.e.” =0.001)
0.1938 | 03814 | 0.0679 | 0.0679 | 0.5326 | 1+/rand(l) . MOEA/D-PCX
0.202465 | 0.351605 | 0.380094 | 0.005218 | 0583975 | v+ 1 UFl | 00312 | 00638 | 0.0749 | 00573 | 0.1886
0.1953 | 04441 | 0389 | 0.0997 | 05062 | 1t+/rand(l) ggg g(ﬁgé 82322 ggggg ggégg gggg
Upe | 01807 | 0490 | 04100 | OIOIL | 06212 | vyl UF4 | 0.0496 | 0.0560 | 0.0581 | 0.0075 | 0.0785
0.153636 | 0.443824 | 0.373217 | 0.119556 | 0.586167 | v 11 I B e T E YT
0.01663 | 0.3568 | 0.3446 | 01284 | 05519 | L1+y/rand(l) 0.0775 | 0.2046 | 0.2848 | 0.2056 | 0.8327
00100 | 03911 | 0.3230 | 0.1509 | 005488 | 2++/rand(l) UFG 61600 | 03736 | 04118 | 0.2073 | 08313
UF7 [ o01107 | 03805 | 0.338¢ | 0.0788 | 05688 | Vn+1 UF7 0.0129 | 0.1146 | 0.1909 | 0.1950 0.6199
0.005776 | 0.010898 | 0.062154 | 0.152073 | 0.533897 | vn+1 0.0132 | 00247 | 0.1431 | 0.1717 | 0.5134
T T e T = UFS | 0.891378 | 1.016922 | 1.000308 | 0.066704 | 1.117835
st e Ot 1 [0 [T | (g | o0 | 010 | 0| ome o
02 U7 TR T (R O [, O ) R Table 6: The IGD-metric values found by MOEA/D-MPCX with parameters
0.0583 | 0.0786 | 0.0871 | 00215 [ 01345 | / \\;m we = 0,002, w, = /2 for UFL-UFLO.
04216 | 0497 | 04983 | 0.0450 | 05819 | 1+ yn—-27
UF9 00404 | 01607 | 01502 | 003092 | 085 | 2% ya -7 |CEC,09 e I‘?EA/D'MPCX' T t|
- - min/bes medlan mean max,/ wors
L e 0 e A OrT | et o ok owtee | T3S
i [ as o || om e | e UF2 | 0.014111 | 0.023313 | 0.033506 | 0.020654 | 0.095736
' : : : : UF3 | 0.204872 | 0.227166 | 0.232482 | 0.021263 | 0.280650

Table 3: The IGD-metric values of the MOEA/D-CMX for UF1-UF10.

MOEA/D with CMX (MOEA/D-CMX) |

CEC'09 | min/Best | median | mean | Std | max/worst
UFL | 0.0041 | 0.0045 | 0.0053 | 0.0034 | 0.0228
UF2 | 0.0052 | 0.0068 |0.0069 |0.0011 | 0.0090
UF3 | 0.0044 | 0.0223 | 0.0326 | 0.0271 | 0.0913
UF4 | 0.0535 | 0.0606 | 0.0614 | 0.0047 | 0.0739
UFS | 02224 | 03837 | 04254 | 0.1546 | 0.7124
UF6 | 0.1500 | 0.4436 | 0.3981 | 0.1538 | 0.7619
UF7 | 0.0048 | 0.0063 | 0.0085 | 0.0055 | 0.0317
UF8 | 0.0588 | 0.0685 | 0.0752 | 0.0166 | 0.1199
UF9 | 0.0491 | 0.1515 | 0.1280 | 0.0608 | 0.3256
UF10 | 0.4280 | 0.4780 | 0.4844 | 0.0351 | 0.5531

UF4 | 0.053795 | 0.063551 | 0.122970 | 0.30149% | 1.716160
UF5 | 0.182220 | 0.442678 | 0.437333 | 0.096366 | 0.643224
UF6 | 0.181398 | 0.446682 | 0.417977 | 0.125357 | 0.780010
UF7 | 0.013394 | 0.227361 | 0.225019 | 0.198278 | 0.557805
UF8 | 0.450662 | 0.636792 | 0.663861 | 0.111034 | 0.946083
UF9 | 0.131885 | 0.236197 | 0.2288897 | 0.039954 | 0.2922767
UF10 | 0.203368 | 0.453790 | 0.442067 | 0.055197 | 0.503839

Table 7: The IGD-metric values of the MOEA/D-QIX for UF1-UF10.
| MOEA /D with QIX (MOEA/D-QIX) |
CEC’09 | min/Best | median | mean | Std | max/worst
UF1 0.0305 | 0.0837 | 0.0885 | 0.0406 | 0.1809
UF2 0.0319 | 0.0421 | 0.0433 | 0.0067 | 0.0580
UF3 0.0943 | 0.1818 | 0.1822 | 0.0426 | 0.2610
UF7 | 0.0125 | 0.0483 | 0.2200 | 0.2604 | 0.6014
UF8 1.1413 | 1.3027 | 1.2868 | 0.0697 | 1.4228
UF10 0.6433 | 1.0829 |1.1249 | 0.2695 | 1.7226
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Figure 3: Plots of the approximated Pareto Front display by MOEA/DSP X i n its
test instances.
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Figure 4: Plots of the approximated Pareto Front display by MOEA/BADE i n i t's
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Figure 5: Plots of the approximated Pareto Front display by MOEA/DQIX in its best run among 30 independent runs over UFUF3
and UF7 test instances.

Figure 6: Plots of the 30 approximated Pareto Fronts of MOEA/BCMX altogetherfor CEC6 09 t est i nstance:

Figure 7: Plots of the 30 approximated Pareto Fronts of MOEA/BSP X al t oget her for CECO609 t e



