6. SR
Analytical Mu|t|d|mens|0na|

(Multivariable) Unconstrained
Optimization

Lcaming Objcc’civcs e

After studying this chapter, you should be able to:

1. Describe the method of solving problems of multivariable unconstrained optimization.

2. Classify the multivariable optimization problems.

3. Explain the necessary and sufficient conditions for solving multivariable unconstrained
optimization problems.

4. Solve unconstrained multivariable functions.

In Chapter 5, we formulated the single variable optimization problems without constraints. Now
let us extend those concepts to solve multivariable optimization problems without constraints.
The optimization of such problems is routed in more than one direction. For instance, if there
are two variables in the objective function, we call such problems two-dimensional as we have 10
search from two directions. Similarly, a three-variable problem can be called three-dimensiond)
and so on. However, the method of solving is similar in all such cases, and, therefore, all thest
problems can be named multidimensional or multivariable unconstrained optimization problems:

Recollect that we made use of complete differentiation to solve single variable unconstrained
optimization problems. Here we use the concept of partial differentiation in solving multivariable
unconstrained optimization problems using analytical methods.

6.1 Classification of Multivariable Optimization prob|e,hg

The multivariable optimization problems can be classified broadly into two categories
multivariable unconstrained optimization, i.e. without constraints. and multivariable constralt®
optimization, i.e. with constraints. Further, since we categorize the constraints into tWO types:
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such as equality and inequality type we can further classify the multivariable constrained
Summarily, the classification of multivariable optimization

optimization problems into two types.

’

problems is shown in Figure 6.1.
Multivariable optimization problems
l ] |
Multivariable Multivariable
unconstrained optimization, constrained optimization,
i.e. without constraints i.e. with constraints
| l |
Equality constraints Inequality constraints
Figure 6.1 Classification of multivariable optimization problems,

In this chapter, we discuss the analytical solution methods for multivariable unconstrained
optimization.

6.2 Optimization Techniques to Solve Unconstrained Multivariable
Functions
Let us now discuss the necessary and sufficient conditions for optimization of an unconstrained

(without constraints) multivariable function for which we make use of Taylor’s series expansion
of a multivariable function. Taylor’s theorem/series expansion is given in Exhibit 6.1.

Exhibit 6.1
Taylor’s Theorem/Series Expansion

Taylor’s Series

In the Taylor’s formula with remainder [Eqgs. (i) and (ii)], if the remainder R (x) — 0 as n
—> o, then we obtain

— ) — )2 - 4
f(x)=f(a)+——(x,.”’f’(a)+(iﬁﬂ'f”fa)+'“+'(£‘,;,£)“/"”’(a)+~- (i

which is called the Taylor's series. When a = 0, we obtain the Maclaurin'y series

L x? ¥
Sx)=f0)+=1/(0)+ = [7(0) 4 -+ = [ (0) 4 --- (ii)
1! 2! n!

Since it j
bound; 's assumed that f(x) has continuous derivatives up to (n + 1)t order, /7 Vix) is
12 in the interval (a, x). Hence, to establish that lim IR, (x)|=0, it is sufficient to show
g ﬂ!at 5 [x_, n+1 =y

lim al

R na

=0 for any fixed numbers x and a, Now, for any fixed numbers x and a,
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6.3 Necessary Condition (Theorem 6.1)

If /) has an EXFEmE point (maximum or minimum) at x = x" and if the first derivative of
f(x) exists at x", then

Y _ U _YE)
0x; 0x, ox,




64 Sufficient Condition (Theorem 6.2)
A sufficient condition for a stationary point x* to be an extreme point is that the matrix of
- second partial derivatives (Hessian matrix) of f(x) evaluated at x~ is:

() Positive definite when x” is a relative minimum point.
(ii) Negative definite when x* is a relative maximum point.




6.5 Working Rule (Algorithm) for Unconstrained Multivariable

Optimization
From Theorems 6.1 and 6.2, we can obtain the following procedure to solve the problems of

multivariable functions without constraints.
Step 1: Check the function to ensure that it belongs to the category of multivariable
unconstrained optimization problems, i.e. it should contain more than one variable,

say, X;, X,, ..., X, and no constraints.

Find the first partial derivatives of the function w.r.t. Xis Xy veey X,

n

Step 2:



Step 3:

Step 4:
Step 5:

Step 6:

- Step 7:
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Equate all the ﬁrst partial derivatives (obtained from Step 2) to zero to find the values
Of xl’ x2, ceey xn.
Find all the second partial derivatives of the function.

Prepare the Hessian matrix. For example, if we have two variables x., x,, in f(x),
then the Hessian matrix is 1472

/AT
2
J(xl*,xz*) _ ox; ox,0x,
Ff S
_axlaxz ) ax%

Find the values of determinants of square sub-matrices

Jpp Sy s I,
2
In our example, J| = s
ox;
’f  Of
2
and J, = o%i 91975
it i 2ipeitoe sgh
0x,0x, ox3

Evaluate whether x;, x; are relative maxima or minima depending on the positive or
negative nature of J;, J, and so on.

Thus, the sign of J; decides whether J is positive or negative while the sign of J,
decides definite or indefiniteness of J (Table 6.1). More clearly,

If (i) J,>0,J,> 0, then J is positive deﬁnlte and x* is a relative minimum.
(i1) J >0, J < 0, then J is indefinite and x* is a saddle point.
(iii) J <0, J > 0, then J is negative deﬁmte and x* is a relative maximum.
(iv) J <0, J < 0, then J is indefinite and x" is a saddle point.

Table 6.1 presents the sign notation of J.

Table 6.1 Sign Notation of J

g T J1 positive or J, > 0 ~ J, negative or J, < 0
L T | (Jis positive) ._»' . (Jis negative) -

'(]3 positive or J,>0 |Jis posmve definite and x* | Jis negative definite and
i 18 definite) is a relative minimum x" is a relative maximum
(} :;egatlve orJ,<0 [Jisindefinite and x" is a J is indefinite and x" is a
W) saddle point saddle point
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Note: If in a function of two variables f(x;, X,) the HSSSIan matrix 18 neither POsitiye

negative definite, then the point (xf , x;) at which 9f/dx; = 0f/0x, is called the saqy),

a5 . . € Doip
which means it may be a maximum or minimum with one variable when the other jg

fixeq
Ilustration 6.2 Determine the extreme points as well as evaluate the following function ¢ (x):

f) =x3 +x) + 207+ 4x) + 6

Solution The necessary conditions for the existence of an extreme point are

of o _

ax, 0 M4 5 T

d

a—fl = 3x12 + 4x, = x,(3x; + 4)=0 ()

d

5){: =3x2 + 8x, = x,(3x, + 8) =0 (i
4

From Eq. (i), we get x; = 0 or ~3

And from Eq. (ii), we get x, = 0 or —g

Hence, the above equations are satisfied by the following pointé:
(0, 0), (0, —8/3), (—4/3, 0) and (—4/3, —8/3)

Now, let us find the nature of these extreme points for which we use the sufficiency
conditions, i.e. by the second order partial differentiation of f.

2
a—]; =6x, +4
axl

The Hessian matrix of f is given by

7= 6x, +4 0
0 6x, +8

Hence,
J| = |6x, + 4
and _
_|6x; +4 0
271 0 6x,+8
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The values of J; and J, and the nature of the extreme points are given in Table 6.2.

Table 6.2 Sign Notation of J in Illustration 6.2

Point x Value of  Value of Nature of J Nature of x fC)
A J, , - _
(0, 0) +4 +32 Positive definite Relative minimum 6
(0,-8/3) +4 =32 Indefinite Saddle point since 418/27
df/ dx,= 9f/ ox,
(~4/3, 0) —4 -32 Indefinite Saddle point 194/27
(-4/3,-8/3) —4 +32  Negative definite Relative maximum 50/3

Ilustration 6.3 Find the extreme values of the function Sy, x)) = xF — x2.

Solution  Applying the necessary conditions df/dx, = 0 and df/ox, = 0, we have

of

_— =2 — —
ax1 X, 0 = X, 0
of

Now, applying the sufficient conditions

0% f 0> f 0% f
—ax—lz = 2 ax§ = -2 and YaE =0

2 0
0 2

Therefore, the Hessian matrix J = |:

Thus at X, = 0, X, = 0.
0
0 -2
Since J is positive (+2) and J, is negative (—4), the nature of J is indefinite .anc.l the point at
f1=0,x,=0is a saddle point, and also the value the function at this saddle point is f(0,0) = 0.

=—4

We have J1 = |2| = 2 and J2 =

Note: At the saddle point if one of the values of x; or x, is fixed, the other may show extremity.



[llustration 6.5 Two frictionless rigid bodies R, and R, are connected by three linear elastic
springs of constants k, k, and k; as shown in Figure 6.3. The springs are at their natural
positions when the applied force P is zero. Find the displacements x; and x, under the force
of 26 units by using the principle of minimum potential energy assuming the spring constants
k, k, and k; as 2, 3 and 4 respectively. Examine whether the displacements correspond to the

minimum potential energy.

1177777777777 777777

/i

RZ R 1
9 _ 0. OO

E Figure 6.3 Illustration 6.5.
Solution  'We know that the potential energy U is given by

Potential energy, U = strain energy of springs — work done by external forces.
= [(1/2)k,x? + (1/2)k;(x, — x, )2+ (1/2)k,x3] — Px,

1 ky and k, are the spring constants.

Vhere
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Now taking k,, k, and k; as 2, 3 and 4 respectively, we get the potential CNIgY, U 4
1°

1 1,y 2]—10
0= Lt + Ly =00+ e |- P

- 1
| Lyax? +l><4(xz—x1)2+—><ZX§]—sz
2 2 2

=%x12 +2(x, —xl)2 +x§ — Px,

Applying the necessary condition for the minimum of U, and substituting the value of SPring
constants, we get

U
—— =kyx; —ki(x, — %) =0 -
ox, 2 —k3(x — % i)
=3x1_4(x2—x1.)=0
and £=k3(x2—x1)+k1x2—P=0 (i1
ax2

=4(x2—x1)+2x2—P=0

The values of x, and x, corresponding to the equilibrium state obtained by the above equations are

e Phy . o o aonisdP _4p
VT kky ks +hsk;  (2x3)+(3%x4)+(4%2) 26
WPy +hy) 4P 7P

b . — = - —
2T kky + ks sk, (2X3)+(3x4)+(4%2) 26
At P = 26 units, x; = 4 units and x; = 7 units.

Now, the sufficiency condition for the minimum PE at (x; , x;) can also be verified by testing
the positive definiteness of the Hessian matrix of U. The Hessian matrix of U evaluated &
(1, %) is

0°U U 32U »
—'=k +k =7, e —— =—_k = - _— =
N 4, - ky + ks =6
U - U ]
P B [+l —k
Cm) 32y U ~ky Kk t+k,
0 2 |
| Ox0x,  ox3 ety

17 -47
- 1=4 6
The determinants of sub-matrices of J are

=l + k|l =k +k=7>0




1

"

2 ,'

- and 2~

" Gince the values of J are positive, the matrix .J is positive definite and hence the values X
: r; correspond to the minimum potential energy.

[llustration 6.6 The profit on a contract of road laying is estimated as 26x; + 20x, + 4x
- 3x2 — 4x7, where x, and x,
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ky+hky =k,
_k3 kl + k3

_}7 -4

=42 +16=
by 6|. 6=58>0

and

*
x =4and x, = 7.

x
1%2
denote the labour cost and the material cost respectively. Find

.~ the values of labour cost and material cost that can maximize the profit on the contract.

Solution ~ Given, profit Z(x,, x,) = 26x, + 20x, + 4x,x, — 3x2 - 4x2 '
Applying the necessary conditions, i.e.

3z _oz _
ox; ox,
0Z ;
T—=26+4x, —6x,=0 (1)
ox,
and a—Z =20+4x —8x,=0 (ii)
_ 0x;, ‘ .

On solving Egs. (i) and (ii), we get xr =9, x; = 7.

Now, let us apply the sufficiency condition to maximize the profit (Z) at (x;, x,). This is
verified by testing the negative definiteness of the Hessian matrix. The Hessian matrix of Z at

* %
~ (%, xy) is calculated as

‘ 2
Z
2g—=—6,a—Zz=—8 and g =4
ox? ox; 0x,0x,
. H . . _6 4
+ Hessian matrix J Al IR
The determinants of the square sub-matrices of J are
J=|-6|=-6<0
6 4|
= =48-16=32>0

, "Since J is negative (i.e. —=6) and J, is positive (i.e. +32) which is definite, the nature of J is

- ,negative definite. Hence, the values of X, and x, show a relative maximum for Z at x) and x,
l'e‘spﬁ(:tively_

* *
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Hence max profit, Z_ . =26(9) + 20(7) + 409)(7) - 309)* — 47y
— 234 + 140 + 252 — 243 — 196 = 187 units

Summary

Y

Multivariable optimization problems without constraints are explained in this chapter, The
optimization problems of multivariable functions without constraints make use of Taylor’s
series expansion of multivariable functions and partial differentiations. The basic idea behipg
the solution methods of these problems is trying to convert them nearest to the single variab]e
problems, i.e. the partial differentiation which is the differentiation of one variable at a time
keeping the other variables fixed. However, the mathematical concepts of matrices, calculus

and other simple algebraic principles are prerequisites to these problems. We will take up the
multivariable constrained problems in the next chapter.

Key Concepts

Multidimensional optimization: The optimization problems routed in more than one direction, ie.
having more than one variable. :

Saddle point: If there is a function of two variables f(x, x,) whose Hessian matrix is neither positive

definite nor negative definite, then the point (x; , x;) at which Jf/ axl* = df/ ax; is called the saddle point.

Hessian matrix: J__ , = [0%/ 0x0x,|,_.] is the matrix of the second partial derivative.
Positive definite: If J, > 0, J, > 0, then J is positive definite and x" is a relative minimum.

Positive indefinite: If J> 0, J,< 0, then J is indefinite and x* is a saddle point.

Negative definite: If J, <0, J,> 0, then J is negative definite and x" is a relative maximum.
Negative indefinite: If J, <0, J, <0, then J is indefinite and x* is a saddle point.




